Abstract
We have fabricated nanotextured Si substrates that exhibit controllable optical reflection intensities and colors. Si nanopore has a photon trapping nanostructure but has abrupt changes in the index of refraction displaying a darkened specular reflection. Nanoscrew Si shows graded refractive-index photon trapping structures that enable diffuse reflection to be as low as 2.2% over the visible wavelengths. By tuning the 3D nanoscale silicon structure, the optical reflection peak wavelength and intensity are changed in the wavelength range of 300800nm, making the surface have different reflectivity and apparent colors. The relation between the surface optical properties with the spatial features of the photon trapping nanostructures is examined. Integration of photon trapping structures with planar Si structure on the same substrate is also demonstrated. The tunable photon trapping silicon structures have potential applications in enhancing the performance of semiconductor photoelectric devices.
Original language | English (US) |
---|---|
Article number | 125202 |
Journal | Nanotechnology |
Volume | 23 |
Issue number | 12 |
DOIs | |
State | Published - Mar 30 2012 |
Externally published | Yes |
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering