F-CAD: A Framework to Explore Hardware Accelerators for Codec Avatar Decoding

Xiaofan Zhang, Dawei Wang, Pierce Chuang, Shugao Ma, Deming Chen, Yuecheng Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Creating virtual avatars with realistic rendering is one of the most essential and challenging tasks to provide highly immersive virtual reality (VR) experiences. It requires not only sophisticated deep neural network (DNN) based codec avatar decoders to ensure high visual quality and precise motion expression, but also efficient hardware accelerators to guarantee smooth real-time rendering using lightweight edge devices, like untethered VR headsets. Existing hardware accelerators, however, fail to deliver sufficient performance and efficiency targeting such decoders which consist of multi-branch DNNs and require demanding compute and memory resources. To address these problems, we propose an automation framework, called F-CAD (Facebook Codec avatar Accelerator Design), to explore and deliver optimized hardware accelerators for codec avatar decoding. Novel technologies include 1) a new accelerator architecture to efficiently handle multi-branch DNNs; 2) a multi-branch dynamic design space to enable fine-grained architecture configurations; and 3) an efficient architecture search for picking the optimized hardware design based on both application-specific demands and hardware resource constraints. To the best of our knowledge, F-CAD is the first automation tool that supports the whole design flow of hardware acceleration of codec avatar decoders, allowing joint optimization on decoder designs in popular machine learning frameworks and corresponding customized accelerator design with cycle-accurate evaluation. Results show that the accelerators generated by F-CAD can deliver up to 122.1 frames per second (FPS) and 91.6% hardware efficiency when running the latest codec avatar decoder. Compared to the state-of-the-art designs, F-CAD achieves 4.0× and 2.8× higher throughput, 62.5% and 21.2% higher efficiency than DNNBuilder [1] and HybridDNN [2] by targeting the same hardware device.

Original languageEnglish (US)
Title of host publication2021 58th ACM/IEEE Design Automation Conference, DAC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages763-768
Number of pages6
ISBN (Electronic)9781665432740
DOIs
StatePublished - Dec 5 2021
Event58th ACM/IEEE Design Automation Conference, DAC 2021 - San Francisco, United States
Duration: Dec 5 2021Dec 9 2021

Publication series

NameProceedings - Design Automation Conference
Volume2021-December
ISSN (Print)0738-100X

Conference

Conference58th ACM/IEEE Design Automation Conference, DAC 2021
Country/TerritoryUnited States
CitySan Francisco
Period12/5/2112/9/21

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'F-CAD: A Framework to Explore Hardware Accelerators for Codec Avatar Decoding'. Together they form a unique fingerprint.

Cite this