Extractive summarization using a latent variable model

Asli Celikyilmaz, Dilek Hakkani-Tür

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Extractive multi-document summarization is the task of choosing sentences from a set of documents to compose a summary text in response to a user query. We propose a generative approach to explicitly identify summary and non-summary topic distributions in the sentences of a given set of documents (i.e., document cluster). Using these approximate summary topic probabilities as latent output variables, we build a discriminative classifier model. The sentences in new document clusters are inferred using the trained discriminative model. In our experiments we find that the proposed summarization approach is effective in comparison to the state-of-the-art methods.

Original languageEnglish (US)
Title of host publicationProceedings of the 11th Annual Conference of the International Speech Communication Association, INTERSPEECH 2010
PublisherInternational Speech Communication Association
Pages2526-2529
Number of pages4
StatePublished - 2010
Externally publishedYes

Publication series

NameProceedings of the 11th Annual Conference of the International Speech Communication Association, INTERSPEECH 2010

Keywords

  • Discriminative classification
  • Summarization
  • Topic modeling

ASJC Scopus subject areas

  • Language and Linguistics
  • Speech and Hearing
  • Human-Computer Interaction
  • Signal Processing
  • Software
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Extractive summarization using a latent variable model'. Together they form a unique fingerprint.

Cite this