TY - JOUR
T1 - Extracting the Temperature Analytically in Hydrodynamics Simulations with Gas and Radiation Pressure
AU - Baumgarte, Thomas W.
AU - Shapiro, Stuart L.
N1 - This work was supported, in part, by National Science Foundation (NSF) grant PHY-2308821 to Bowdoin College, as well as NSF grants PHY-2006066 and PHY-2308242 to the University of Illinois at Urbana-Champaign.
PY - 2025/4/1
Y1 - 2025/4/1
N2 - Numerical hydrodynamics simulations of gases dominated by ideal, nondegenerate matter pressure and thermal radiation pressure in equilibrium entail finding the temperature as part of the evolution. Since the temperature is not typically a variable that is evolved independently, it must be extracted from the evolved variables (e.g., the rest-mass density and specific internal energy). This extraction requires solving a quartic equation, which, in many applications, is done numerically using an iterative root-finding method. Here we show instead how the equation can be solved analytically and provide explicit expressions for the solution. We also derive Taylor expansions in limiting regimes and discuss the respective advantages and disadvantages of the iterative versus analytic approaches to solving the quartic.
AB - Numerical hydrodynamics simulations of gases dominated by ideal, nondegenerate matter pressure and thermal radiation pressure in equilibrium entail finding the temperature as part of the evolution. Since the temperature is not typically a variable that is evolved independently, it must be extracted from the evolved variables (e.g., the rest-mass density and specific internal energy). This extraction requires solving a quartic equation, which, in many applications, is done numerically using an iterative root-finding method. Here we show instead how the equation can be solved analytically and provide explicit expressions for the solution. We also derive Taylor expansions in limiting regimes and discuss the respective advantages and disadvantages of the iterative versus analytic approaches to solving the quartic.
UR - http://www.scopus.com/inward/record.url?scp=105001586519&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105001586519&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/adbd10
DO - 10.3847/1538-4357/adbd10
M3 - Article
AN - SCOPUS:105001586519
SN - 0004-637X
VL - 982
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 157
ER -