Extracting community structure through relational hypergraphs

Yu Ru Lin, Jimeng Sun, Paul Castro, Ravi Konuru, Hari Sundaram, Aisling Kelliher

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Social media websites promote diverse user interaction on media objects as well as user actions with respect to other users. The goal of this work is to discover community structure in rich media social networks, and observe how it evolves over time, through analysis of multi-relational data. The problem is important in the enterprise domain where extracting emergent community structure on enterprise social media, can help in forming new collaborative teams, aid in expertise discovery, and guide long term enterprise reorganization. Our approach consists of three main parts: (1) a relational hypergraph model for modeling various social context and interactions; (2) a novel hypergraph factorization method for community extraction on multi-relational social data; (3) an online method to handle temporal evolution through incremental hypergraph factorization. Extensive experiments on real-world enterprise data suggest that our technique is scalable and can extract meaningful communities. To evaluate the quality of our mining results, we use our method to predict users' future interests. Our prediction outperforms baseline methods (frequency counts, pLSA) by 36-250% on the average, indicating the utility of leveraging multi-relational social context by using our method. Copyright is held by the author/owner(s).

Original languageEnglish (US)
Title of host publicationWWW'09 - Proceedings of the 18th International World Wide Web Conference
Number of pages2
StatePublished - 2009
Event18th International World Wide Web Conference, WWW 2009 - Madrid, Spain
Duration: Apr 20 2009Apr 24 2009

Publication series

NameWWW'09 - Proceedings of the 18th International World Wide Web Conference


Other18th International World Wide Web Conference, WWW 2009


  • Community evolution
  • Dynamic social network analysis
  • Non-negative tensor factorization
  • Relational hypergraph

ASJC Scopus subject areas

  • Computer Networks and Communications


Dive into the research topics of 'Extracting community structure through relational hypergraphs'. Together they form a unique fingerprint.

Cite this