TY - JOUR
T1 - Extracellular matrix and pulmonary hypertension
T2 - Control of vascular smooth muscle cell contractility
AU - Lee, Kyung Mi
AU - Tsai, Kenneth Y.
AU - Wang, Ning
AU - Ingber, Donald E.
PY - 1998/1
Y1 - 1998/1
N2 - Pulmonary hypertension is characterized by increased vascular resistance due to smooth muscle cell hyperactivity and excess deposition of extracellular matrix (ECM) in the vessel wall. We investigated the possibility that changes in cell-ECM interactions may play an active role in this process by modifying the contractile response of pulmonary vascular smooth muscle (PVSM) cells. Contractility was measured within individual cultured PVSM cells, when resting or stimulated with vasoactive agents, by quantitating changes in stiffness of the cytoskeleton (CSK) using magnetic twisting cytometry (N. Wang, J. P. Butler, and D. E. Ingber. Science 260: 1124-1127, 1993). Control studies confirmed that changes in CSK stiffness closely paralleled alterations in cell contraction and relaxation as measured in response to endothelin-1 (ET-1) and dibutyryl guanosine 3′,5′-cyclic monophosphate (cGMP), respectively, in a collagen gel contraction assay. CSK stiffness and contractile tone in cultured PVSM cells increased in direct proportion as the density of fibronectin (FN) coating was raised from 10 to 500 ng/well in 96-well plates. Dibutyryl cGMP had no effect in cells on low FN, although it completely inhibited the FN-dependent increase in CSK stiffness on higher ECM densities. In contrast, ET-1 induced the greatest increase in CSK stiffness on the intermediate FN density (100 ng/well). The reduced sensitivity to ET-1 on high FN was not due to dysfunction of the contractile apparatus nor to changes in protein tyrosine phosphorylation. Taken together, these results show that ECM can modulate PVSM cell contractility and suggest that the changes in ECM observed in hypertensive vessels could play an important role in the etiology of this disease.
AB - Pulmonary hypertension is characterized by increased vascular resistance due to smooth muscle cell hyperactivity and excess deposition of extracellular matrix (ECM) in the vessel wall. We investigated the possibility that changes in cell-ECM interactions may play an active role in this process by modifying the contractile response of pulmonary vascular smooth muscle (PVSM) cells. Contractility was measured within individual cultured PVSM cells, when resting or stimulated with vasoactive agents, by quantitating changes in stiffness of the cytoskeleton (CSK) using magnetic twisting cytometry (N. Wang, J. P. Butler, and D. E. Ingber. Science 260: 1124-1127, 1993). Control studies confirmed that changes in CSK stiffness closely paralleled alterations in cell contraction and relaxation as measured in response to endothelin-1 (ET-1) and dibutyryl guanosine 3′,5′-cyclic monophosphate (cGMP), respectively, in a collagen gel contraction assay. CSK stiffness and contractile tone in cultured PVSM cells increased in direct proportion as the density of fibronectin (FN) coating was raised from 10 to 500 ng/well in 96-well plates. Dibutyryl cGMP had no effect in cells on low FN, although it completely inhibited the FN-dependent increase in CSK stiffness on higher ECM densities. In contrast, ET-1 induced the greatest increase in CSK stiffness on the intermediate FN density (100 ng/well). The reduced sensitivity to ET-1 on high FN was not due to dysfunction of the contractile apparatus nor to changes in protein tyrosine phosphorylation. Taken together, these results show that ECM can modulate PVSM cell contractility and suggest that the changes in ECM observed in hypertensive vessels could play an important role in the etiology of this disease.
KW - Cell mechanics
KW - Cytoskeleton
KW - Fibronectin
KW - Gel contraction
KW - Magnetic twisting cytometry
UR - http://www.scopus.com/inward/record.url?scp=33750884659&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750884659&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.1998.274.1.h76
DO - 10.1152/ajpheart.1998.274.1.h76
M3 - Article
C2 - 9458854
AN - SCOPUS:33750884659
SN - 0363-6135
VL - 274
SP - H76-H82
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 1 43-1
ER -