Exploring Geometric Consistency for Monocular 3D Object Detection

Qing Lian, Botao Ye, Ruijia Xu, Weilong Yao, Tong Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper investigates the geometric consistency for monocular 3D object detection, which suffers from the ill-posed depth estimation. We first conduct a thorough analysis to reveal how existing methods fail to consistently localize objects when different geometric shifts occur. In particular, we design a series of geometric manipulations to diagnose existing detectors and then illustrate their vulnerability to consistently associate the depth with object apparent sizes and positions. To alleviate this issue, we propose four geometry-aware data augmentation approaches to enhance the geometric consistency of the detectors. We first modify some commonly used data augmentation methods for 2D images so that they can maintain geometric consistency in 3D spaces. We demonstrate such modifications are important. In addition, we propose a 3D-specific image perturbation method that employs the camera movement. During the augmentation process, the camera system with the corresponding image is manipulated, while the geometric visual cues for depth recovery are preserved. We show that by using the geometric consistency constraints, the proposed augmentation techniques lead to improvements on the KITTI and nuScenes monocular 3D detection benchmarks with state-of-the-art results. In addition, we demonstrate that the augmentation methods are well suited for semisupervised training and cross-dataset generalization.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages1675-1684
Number of pages10
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 24 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/24/22

Keywords

  • 3D from single images
  • categorization
  • Efficient learning and inferences
  • Recognition: detection
  • retrieval

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Exploring Geometric Consistency for Monocular 3D Object Detection'. Together they form a unique fingerprint.

Cite this