TY - JOUR
T1 - Exploring Exercise- and Context-Induced Peptide Changes in Mice by Quantitative Mass Spectrometry
AU - Dowd, Sarah E.
AU - Mustroph, Martina L.
AU - Romanova, Elena V.
AU - Southey, Bruce R.
AU - Pinardo, Heinrich
AU - Rhodes, Justin S.
AU - Sweedler, Jonathan V.
N1 - Publisher Copyright:
Copyright © 2018 American Chemical Society.
PY - 2018/10/24
Y1 - 2018/10/24
N2 - Recent research suggests that exercise may help facilitate abstinence from cocaine addiction, though the mechanisms are not well understood. In mice, wheel running accelerates the extinction of conditioned place preference (CPP) for cocaine, providing an animal model for evaluating potential neurological mechanisms. The objective of this study was to quantify dynamic changes in endogenous peptides in the amygdala and dentate gyrus of the hippocampus in mice exposed to a context paired with the effects of cocaine, and in response to exercise. Male C57BL/6J mice conditioned to cocaine were housed with or without running wheels for 30 days. Following a CPP test and final exposure to either a cocaine- or saline-associated context, peptides were measured in brain tissue extracts using label-free matrix-assisted laser desorption/ionization mass spectrometry (MS) and stable isotopic labeling with liquid chromatography and electrospray ionization MS. CPP in mice was significantly reduced with running, which correlated to decreased myelin basic protein derivatives in the dentate gyrus extracts, possibly reflecting increased unmyelinated granule neuron density. Exposure to a cocaine-paired context increased hemoglobin-derived peptides in runners and decreased an actin-derived peptide in sedentary animals. These results allowed us to characterize a novel set of biomarkers that are responsive to exercise in the hippocampus and in a cocaine-paired context in the amygdala.
AB - Recent research suggests that exercise may help facilitate abstinence from cocaine addiction, though the mechanisms are not well understood. In mice, wheel running accelerates the extinction of conditioned place preference (CPP) for cocaine, providing an animal model for evaluating potential neurological mechanisms. The objective of this study was to quantify dynamic changes in endogenous peptides in the amygdala and dentate gyrus of the hippocampus in mice exposed to a context paired with the effects of cocaine, and in response to exercise. Male C57BL/6J mice conditioned to cocaine were housed with or without running wheels for 30 days. Following a CPP test and final exposure to either a cocaine- or saline-associated context, peptides were measured in brain tissue extracts using label-free matrix-assisted laser desorption/ionization mass spectrometry (MS) and stable isotopic labeling with liquid chromatography and electrospray ionization MS. CPP in mice was significantly reduced with running, which correlated to decreased myelin basic protein derivatives in the dentate gyrus extracts, possibly reflecting increased unmyelinated granule neuron density. Exposure to a cocaine-paired context increased hemoglobin-derived peptides in runners and decreased an actin-derived peptide in sedentary animals. These results allowed us to characterize a novel set of biomarkers that are responsive to exercise in the hippocampus and in a cocaine-paired context in the amygdala.
UR - http://www.scopus.com/inward/record.url?scp=85055715657&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055715657&partnerID=8YFLogxK
U2 - 10.1021/acsomega.8b01713
DO - 10.1021/acsomega.8b01713
M3 - Article
AN - SCOPUS:85055715657
SN - 2470-1343
VL - 3
SP - 13817
EP - 13827
JO - ACS Omega
JF - ACS Omega
IS - 10
ER -