Exploring Characteristic Features in Gait Patterns for Predicting Multiple Sclerosis

Rachneet Kaur, Sanjana Menon, Xiaomiao Zhang, Richard Sowers, Manuel E. Hernandez

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Multiple Sclerosis (MS), an autoimmune and demyelinating disease, is one the most prevalent neurological disabilities in young adults. It results in damage of the central nervous system, disrupting communication between the patient's brain, spinal cord and body. Mobility limitations is one of the earliest symptoms and affects a majority of persons with Multiple Sclerosis. We are working towards an effort to characterize individuals with MS, from those without, on the basis of variations in the gait patterns. In the proposed work, statistical methods were used to identify differentiating gait data features for MS characterization. The prediction algorithms built upon these characteristic features will help clinicians develop effective and early cure and therapy designs for persons with Multiple Sclerosis.

Original languageEnglish (US)
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4217-4220
Number of pages4
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: Jul 23 2019Jul 27 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period7/23/197/27/19

Keywords

  • Gait patterns
  • Multiple sclerosis
  • Spatiotemporal data
  • Statistical learning

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Exploring Characteristic Features in Gait Patterns for Predicting Multiple Sclerosis'. Together they form a unique fingerprint.

Cite this