@inproceedings{a8eea85703bb42b98fcbbfb0d7fd4dd4,
title = "Exploiting Spatial-temporal-social Constraints for Localness Inference Using Online Social Media",
abstract = "The localness inference problem is to identify whether a person is a local resident in a city or not and the likelihood of a venue to attract local people. This information is critical for many applications such as targeted ads of local business, urban planning, localized news and travel recommendations. While there are prior work on geo-locating people in a city using supervised learning approaches, the accuracy of those techniques largely depends on a high quality training dataset, which is difficult and expensive to obtain in practice. In this study, we propose to exploit spatial-temporal-social constraints from noisy online social media data to solve the localness inference problem using an unsupervised approach. The spatial-temporal constraint represents the correlations between people and venues they visit and the social constraint represents social connections between people. In particular, we develop a Spatial-Temporal-Social-Aware (STSA) inference framework to jointly infer i) the localness of a person and ii) the local attractiveness of a venue without requiring any training data. We evaluate the performance of STSA scheme using three real-world datasets collected from Foursquare. Experimental results show that STSA scheme outperforms the state-of-the-art techniques by significantly improving the estimation accuracy.",
keywords = "Local Attractiveness of Venues, Localness Inference, Localness of People, Online Social Media, Spatial-Temporal-Social Constraints",
author = "Chao Huang and Dong Wang",
note = "Funding Information: This material is based upon work supported by the National Science Foundation under Grant No. CBET-1637251, CNS-1566465 and IIS-1447795 and Army Research Office under Grant W911NF-16-1-0388. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on Publisher Copyright: {\textcopyright} 2016 IEEE.; 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016 ; Conference date: 18-08-2016 Through 21-08-2016",
year = "2016",
month = nov,
day = "21",
doi = "10.1109/ASONAM.2016.7752247",
language = "English (US)",
series = "Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "287--294",
editor = "Ravi Kumar and James Caverlee and Hanghang Tong",
booktitle = "Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016",
address = "United States",
}