TY - JOUR
T1 - Explicit RIP matrices
T2 - an update
AU - Ford, K.
AU - Kutzarova, D.
AU - Shakan, G.
N1 - Funding Information:
The first author was partially supported by NSF Grant DMS-1802139.
Publisher Copyright:
© 2022, Akadémiai Kiadó, Budapest, Hungary.
PY - 2022/12
Y1 - 2022/12
N2 - Leveraging recent advances in additive combinatorics, we exhibitexplicit matrices satisfying the Restricted Isometry Property with better parameters.Namely, for ε= 3.26 · 10 - 7, large k and k2-ε≤ N≤ k2+ε, we constructn× N RIP matrices of order k with k= Ω (n1/2+ε/4).
AB - Leveraging recent advances in additive combinatorics, we exhibitexplicit matrices satisfying the Restricted Isometry Property with better parameters.Namely, for ε= 3.26 · 10 - 7, large k and k2-ε≤ N≤ k2+ε, we constructn× N RIP matrices of order k with k= Ω (n1/2+ε/4).
KW - compressed sensing
KW - restricted isometry property
UR - http://www.scopus.com/inward/record.url?scp=85144222311&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144222311&partnerID=8YFLogxK
U2 - 10.1007/s10474-022-01290-7
DO - 10.1007/s10474-022-01290-7
M3 - Article
AN - SCOPUS:85144222311
SN - 0236-5294
VL - 168
SP - 509
EP - 515
JO - Acta Mathematica Hungarica
JF - Acta Mathematica Hungarica
IS - 2
ER -