TY - GEN
T1 - Explicit Noether normalization for simultaneous conjugation via polynomial identity testing
AU - Forbes, Michael A.
AU - Shpilka, Amir
PY - 2013
Y1 - 2013
N2 - Mulmuley [Mul12a] recently gave an explicit version of Noether's Normalization Lemma for ring of invariants of matrices under simultaneous conjugation, under the conjecture that there are deterministic black-box algorithms for polynomial identity testing (PIT). He argued that this gives evidence that constructing such algorithms for PIT is beyond current techniques. In this work, we show this is not the case. That is, we improve Mulmuley's reduction and correspondingly weaken the conjecture regarding PIT needed to give explicit Noether Normalization. We then observe that the weaker conjecture has recently been nearly settled by the authors ([FS12]), who gave quasipolynomial size hitting sets for the class of read-once oblivious algebraic branching programs (ROABPs). This gives the desired explicit Noether Normalization unconditionally, up to quasipolynomial factors. As a consequence of our proof we give a deterministic parallel polynomial-time algorithm for deciding if two matrix tuples have intersecting orbit closures, under simultaneous conjugation. Finally, we consider the depth-3 diagonal circuit model as defined by Saxena [Sax08], as PIT algorithms for this model also have implications in Mulmuley's work. Previous works (such as [ASS13] and [FS12]) have given quasipolynomial size hitting sets for this model. In this work, we give a much simpler construction of such hitting sets, using techniques of Shpilka and Volkovich [SV09].
AB - Mulmuley [Mul12a] recently gave an explicit version of Noether's Normalization Lemma for ring of invariants of matrices under simultaneous conjugation, under the conjecture that there are deterministic black-box algorithms for polynomial identity testing (PIT). He argued that this gives evidence that constructing such algorithms for PIT is beyond current techniques. In this work, we show this is not the case. That is, we improve Mulmuley's reduction and correspondingly weaken the conjecture regarding PIT needed to give explicit Noether Normalization. We then observe that the weaker conjecture has recently been nearly settled by the authors ([FS12]), who gave quasipolynomial size hitting sets for the class of read-once oblivious algebraic branching programs (ROABPs). This gives the desired explicit Noether Normalization unconditionally, up to quasipolynomial factors. As a consequence of our proof we give a deterministic parallel polynomial-time algorithm for deciding if two matrix tuples have intersecting orbit closures, under simultaneous conjugation. Finally, we consider the depth-3 diagonal circuit model as defined by Saxena [Sax08], as PIT algorithms for this model also have implications in Mulmuley's work. Previous works (such as [ASS13] and [FS12]) have given quasipolynomial size hitting sets for this model. In this work, we give a much simpler construction of such hitting sets, using techniques of Shpilka and Volkovich [SV09].
UR - http://www.scopus.com/inward/record.url?scp=84885206176&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84885206176&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-40328-6_37
DO - 10.1007/978-3-642-40328-6_37
M3 - Conference contribution
AN - SCOPUS:84885206176
SN - 9783642403279
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 527
EP - 542
BT - Approximation, Randomization, and Combinatorial Optimization
T2 - 16th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2013 and the 17th International Workshop on Randomization and Computation, RANDOM 2013
Y2 - 21 August 2013 through 23 August 2013
ER -