Abstract
In this paper we present some experiments using a deep learning model for speech denoising. We propose a very lightweight procedure that can predict clean speech spectra when presented with noisy speech inputs, and we show how various parameter choices impact the quality of the denoised signal. Through our experiments we conclude that such a structure can perform better than some comparable single-channel approaches and that it is able to generalize well across various speakers, noise types and signal-to-noise ratios.
Original language | English (US) |
---|---|
Pages (from-to) | 2685-2689 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
State | Published - 2014 |
Event | 15th Annual Conference of the International Speech Communication Association: Celebrating the Diversity of Spoken Languages, INTERSPEECH 2014 - Singapore, Singapore Duration: Sep 14 2014 → Sep 18 2014 |
Keywords
- Deep learning
- Neural networks
- Source separation
- Speech denoising
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modeling and Simulation