Experimental study of wetting anisotropy and condensate drainage enhancement on microgrooved aluminum surface

M. A. Rahman, A. M. Jacobi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Minimization of condensate (frost melt water) retention on a surface operating under frosting/defrosting condition is of tremendous importance in a wide range of air conditioning and refrigeration applications. In the present study, the wetting characteristics, condensation and frosting pattern and the drainage of frost melt water from aluminum surfaces with parallel microgrooves have been examined and compared to the flat baseline surfaces. These surfaces are fabricated by topographical modification only, via standard photolithographic process. The microgrooved samples exhibit wetting anisotropy and static contact angles are as high as 149 and 112° when viewed from parallel and perpendicular directions to the grooves, respectively. Frost is grown on the samples inside a thermally controlled chamber at 3 different plate temperatures of -8°C, -13°C and -18°C, air temperature of 20±2°C and for 3 relative humidity conditions (50%, 70% and 90%). The duration of the frosting cycle is 45 minutes and tests are continued up to 5 frosting cycles, each time defrosting for a certain length of time at the end of frosting period. Significantly different size, shape and distribution of condensed and frozen water droplets on the grooved surfaces are observed from that on the flat baselines. The microgrooved samples are found to manifest better water drainage behavior and drained up to 50% more melt water compared to the flat baseline surfaces. While the amount of water retention on the baseline surfaces increases in the subsequent refrost cycles and is highest in the 5th frost cycle, the microgrooved surfaces show consistently improved water drainage in all cycles.

Original languageEnglish (US)
Title of host publicationHeat and Mass Transport Processes
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages51-59
Number of pages9
EditionPARTS A AND B
ISBN (Print)9780791854969
DOIs
StatePublished - 2011
EventASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 - Denver, CO, United States
Duration: Nov 11 2011Nov 17 2011

Publication series

NameASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
NumberPARTS A AND B
Volume10

Other

OtherASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
Country/TerritoryUnited States
CityDenver, CO
Period11/11/1111/17/11

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Experimental study of wetting anisotropy and condensate drainage enhancement on microgrooved aluminum surface'. Together they form a unique fingerprint.

Cite this