Experimental study of structure/behavior relationship for a metallized explosive

Eric V. Bukovsky, Robert V. Reeves, Ajay Krish, Alex E. Gash, Nick G. Glumac

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse.

Original languageEnglish (US)
Title of host publicationShock Compression of Condensed Matter - 2017
Subtitle of host publicationProceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
EditorsMarcus D. Knudson, Eric N. Brown, Ricky Chau, Timothy C. Germann, J. Matthew D. Lane, Jon H. Eggert
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416932
DOIs
StatePublished - Jul 3 2018
Event20th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2017 - St. Louis, United States
Duration: Jul 9 2017Jul 14 2017

Publication series

NameAIP Conference Proceedings
Volume1979
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other20th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2017
Country/TerritoryUnited States
CitySt. Louis
Period7/9/177/14/17

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Experimental study of structure/behavior relationship for a metallized explosive'. Together they form a unique fingerprint.

Cite this