@inproceedings{16dcf1aef64148a0972c953131fa3440,
title = "Experimental investigation of the machinabilty of polycarbonate reinforced with multiwalled carbon nanotubes",
abstract = "The machinability of a polycarbonate nanocomposite containing multiwalled carbon nanotubes is investigated and contrasted with its base polymer and with a conventional carbon fiber composite. The material microstructures are characterized using transmission electron and scanning electron microscopy methods. Micro end milling experiments are conducted on the three materials. Chip morphology, machined surface characteristics and the nature of the cutting forces are employed as machinability measures for comparative purposes. Polycarbonate chips are seen to transition from being discontinuous to continuous as the feed-per-tooth (FPT) increases, while, at all FPT values the nanocomposite is seen to form comparatively thicker continuous chips. The nanocomposite and the carbon fiber composite are seen to have the lowest and the highest magnitudes, respectively, for both the surface roughness and cutting forces. Shearing along the nanotube-polymer interface and better thermal conductivity are speculated to be the mechanisms responsible for the observations seen in the nanocomposite.",
keywords = "Micro machining, Nanocomposites",
author = "Johnson Samuel and DeVor, {Richard E.} and Kapoor, {Shiv G.} and Hsia, {K. Jimmy}",
year = "2005",
doi = "10.1115/IMECE2005-79756",
language = "English (US)",
isbn = "0791842231",
series = "American Society of Mechanical Engineers, Manufacturing Engineering Division, MED",
pages = "1247--1256",
booktitle = "American Society of Mechanical Engineers, Manufacturing Engineering Division, MED",
note = "2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005 ; Conference date: 05-11-2005 Through 11-11-2005",
}