Experimental entanglement distillation and 'hidden' non-locality

Paul G Kwiat, Salvador Barraza-Lopez, André Stefanov, Nicolas Gisin

Research output: Contribution to journalArticlepeer-review

Abstract

Entangled states are central to quantum information processing, including quantum teleportation1, efficient quantum computation and quantum cryptography3. In general, these applications work best with pure, maximally entangled quantum states. However, owing to dissipation and decoherence, practically available states are likely to be non-maximally entangled, partially mixed (that is, not pure), or both. To counter this problem, various schemes of entanglement distillation, state purification and concentration have been proposed4-11. Here we demonstrate experimentally the distillation of maximally entangled states from non-maximally entangled inputs. Using partial polarizers, we perform a filtering process to maximize the entanglement of pure polarization-entangled photon pairs generated by spontaneous parametric down-conversion12,13. We have also applied our methods to initial states that are partially mixed. After filtering, the distilled states demonstrate certain non-local correlations, as evidenced by their violation of a form of Bell's inequality14,15. Because the initial states do not have this property, they can be said to possess 'hidden' non-locality6,16.

Original languageEnglish (US)
Pages (from-to)1014-1017
Number of pages4
JournalNature
Volume409
Issue number6823
DOIs
StatePublished - Feb 22 2001

ASJC Scopus subject areas

  • Medicine(all)
  • General

Fingerprint Dive into the research topics of 'Experimental entanglement distillation and 'hidden' non-locality'. Together they form a unique fingerprint.

Cite this