TY - JOUR
T1 - Experimental determination of net protein charge and Atot and Ka of nonvolatile buffers in human plasma
AU - Staempfli, Henry R.
AU - Constable, Peter D.
PY - 2003/8/1
Y1 - 2003/8/1
N2 - The mechanism for an acid-base disturbance can be determined by using the strong ion approach, which requires species-specific values for the total concentration of plasma nonvolatile buffers (Atot) and the effective dissociation constant for plasma weak acids (Ka). The aim of this study was to experimentally determine Atot and Ka values for human plasma by using in vitro CO2 tonometry. Plasma PCO2 was systematically varied from 25 to 145 Torr at 37°C, thereby altering plasma pH over the physiological range of 6.90-7.55, and plasma pH, PCO2, and concentrations of quantitatively important strong ions (Na+, K+, Ca2+, Mg2+, Cl-, lactate) and buffer ions (total protein, albumin, phosphate) were measured. Strong ion difference was estimated, and nonlinear regression was used to calculate Atot and Ka from the measured pH and PCO2 and estimated strong ion difference; the Atot and Ka values were then validated by using a published data set (Figge J, Rossing TH, and Fencl V, J Lab Clin Med 117: 453-467, 1991). The values (mean ± SD) were as follows: Atot = 17.2 ± 3.5 mmol/l (equivalent to 0.224 mmol/g of protein or 0.378 mmol/g of albumin); Ka = 0.80 ± 0.60 × 10-7; negative log of Ka = 7.10. Mean estimates were obtained for strong ion difference (37 meq/l) and net protein charge (13.0 meq/l). The experimentally determined values for Atot, Ka, and net protein charge should facilitate the diagnosis and treatment of acid-base disturbances in critically ill humans.
AB - The mechanism for an acid-base disturbance can be determined by using the strong ion approach, which requires species-specific values for the total concentration of plasma nonvolatile buffers (Atot) and the effective dissociation constant for plasma weak acids (Ka). The aim of this study was to experimentally determine Atot and Ka values for human plasma by using in vitro CO2 tonometry. Plasma PCO2 was systematically varied from 25 to 145 Torr at 37°C, thereby altering plasma pH over the physiological range of 6.90-7.55, and plasma pH, PCO2, and concentrations of quantitatively important strong ions (Na+, K+, Ca2+, Mg2+, Cl-, lactate) and buffer ions (total protein, albumin, phosphate) were measured. Strong ion difference was estimated, and nonlinear regression was used to calculate Atot and Ka from the measured pH and PCO2 and estimated strong ion difference; the Atot and Ka values were then validated by using a published data set (Figge J, Rossing TH, and Fencl V, J Lab Clin Med 117: 453-467, 1991). The values (mean ± SD) were as follows: Atot = 17.2 ± 3.5 mmol/l (equivalent to 0.224 mmol/g of protein or 0.378 mmol/g of albumin); Ka = 0.80 ± 0.60 × 10-7; negative log of Ka = 7.10. Mean estimates were obtained for strong ion difference (37 meq/l) and net protein charge (13.0 meq/l). The experimentally determined values for Atot, Ka, and net protein charge should facilitate the diagnosis and treatment of acid-base disturbances in critically ill humans.
KW - Anion gap
KW - Metabolic acidosis
KW - Plasma pH
KW - Strong ion difference
UR - http://www.scopus.com/inward/record.url?scp=0042629785&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042629785&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00100.2003
DO - 10.1152/japplphysiol.00100.2003
M3 - Article
C2 - 12665532
AN - SCOPUS:0042629785
SN - 8750-7587
VL - 95
SP - 620
EP - 630
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 2
ER -