Exomoons in Systems with a Strong Perturber: Applications to α Cen AB

Billy Quarles, Siegfried Eggl, Marialis Rosario-Franco, Gongjie Li

Research output: Contribution to journalArticlepeer-review


The presence of a stellar companion can place constraints on occurrence and orbital evolution of satellites orbiting exoplanets, i.e., exomoons. In this work we revise earlier orbital stability limits for retrograde orbits in the case of a three-body system consisting of a star, planet, and satellite. The revised limit reads asatcrit ≈ 0.668(1-1.236ep) for e p ≤ 0.8 in units of the Hill Radius and represents the lower critical orbit as a function of the planetary eccentricity e p. A similar formula is determined for exomoons hosted by planets in binary star systems, where e p is replaced with the components of free and forced eccentricity from secular orbit evolution theory. By exploring the dynamics of putative exomoons in α Centauri AB we find that the outer stability limit can be much less than half the Hill Radius due to oscillations in the planetary orbital eccentricity caused by the gravitational interaction with the binary star. We show, furthermore, how the resulting truncation of the outer stability limit can affect the outward tidal migration and potential observability of exomoons through transit-timing variations (TTVs). Typical TTV (rms) amplitudes induced by exomoons in binary systems are ≲10 minutes and appear more likely for planets orbiting the less massive stellar component.

Original languageEnglish (US)
Article number58
JournalAstronomical Journal
Issue number2
StatePublished - Aug 2021

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Exomoons in Systems with a Strong Perturber: Applications to α Cen AB'. Together they form a unique fingerprint.

Cite this