Existence of a photonic pseudogap for visible light in synthetic opals

Yu A. Vlasov, V. Astratov, O. Karimov, A. Kaplyanskii, V. Bogomolov, A. Prokofiev

Research output: Contribution to journalArticlepeer-review


Synthetic opals, composed of submicron silica spheres close packed in a three-dimensional fcc lattice, are shown to display photonic stop bands at optical frequencies. We have investigated the light attenuation within the stop band as a function of refractive index contrast. Based on measurements of the Bragg attenuation length and on theoretical considerations, we show that a prominent depletion of the photonic density of states (pseudogap) can be achieved in opals by adjusting the volume packing fraction of the spheres and increasing the refractive index of the pores. To approach the pseudogap criterion the pores of opal were impregnated with CdS nanocrystals. We find a dramatic decrease of the attenuation length in opal-CdS, which indicates the strong perturbation of photonic states.

Original languageEnglish (US)
Pages (from-to)R13357-R13360
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number20
StatePublished - Jan 1 1997
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Existence of a photonic pseudogap for visible light in synthetic opals'. Together they form a unique fingerprint.

Cite this