Abstract
This paper presents an exemplar-based probabilistic approach for face and facial motion tracking. It is well known that high-level knowledge about facial deformations is essential for robust face and facial motion tracking. Face and facial motion tracking problem is usually formulated as a problem of combining the low-level image information and the high-level knowledge. We propose to select only a few representative facial deformation exemplars as the high-level knowledge. A facial deformation can be approximated by a linear combination of the exemplars up to an error term. We develop a probabilistic mechanism that combines the low-level image information and the information provided by the exemplars in terms of maximum a posteriori. The main advantage of this exemplar-based approach is that it avoids manually labelling a large set of training samples, which is required by many other tracking algorithms to train a high-level knowledge model. Therefore, it can be easily set up for different subjects. Moreover, it provides a unified representation for the facial deformations of different subjects.
Original language | English (US) |
---|---|
Pages (from-to) | 3600-3603 |
Number of pages | 4 |
Journal | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
Volume | 4 |
DOIs | |
State | Published - 2002 |
Event | 2002 IEEE International Conference on Acoustic, Speech, and Signal Processing - Orlando, FL, United States Duration: May 13 2002 → May 17 2002 |
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering