Exceptionally high brightness and long lifetime of efficient blue OLEDs for programmable active-matrix display

Chengcheng Wu, Kai Ning Tong, Kefei Shi, Wei He, Manli Huang, Jie Yan, Siqi Li, Zhaoyun Jin, Xin Wang, Sinyeong Jung, Jingrui Ma, Yixi Zhuang, Rong Jun Xie, Cunjiang Yu, Hong Meng, Xiao Wei Sun, Chuluo Yang, Yun Chi, Feiyu Kang, Guodan Wei

Research output: Contribution to journalArticlepeer-review

Abstract

Blue phosphorescent OLEDs (Ph-OLEDs) have long faced critical challenges in efficiency, stability and brightness, which are crucial for advanced display. Herein, we introduce two novel Ir(III) emitters featuring a 3,6-di(tert-butyl)-9H-carbazolyl (tBuCz) substituted tridentate carbene pincer ligand, significantly improving efficiency and stability. The tBuCz-m-CF3 and tBuCz-p-CF3 complexes are designed to enhance steric encumbrance and minimize exciton accumulation. These innovations lead to exceptional photoluminescence quantum yields (PLQY) of 98% and an impressive decay rate constant of 7.97 × 105 s−1 in doped thin films. The Ph-OLEDs emit blue light with a peak wavelength of 485 nm and CIE coordinates of (0.175, 0.446), exhibiting a peak external quantum efficiencies (EQE) of 31.62% and brightness up to 214,255 cd m−2. Notably, they shown minimal efficiency roll-off, retaining an EQE of 27.76% at 10,000 cd m−2, and 20.58% at 100,000 cd m−2. These consistent performances across various brightness levels represent a significant milestone for blue Ph-OLED technology. The devices also exhibit impressive stability, with an operational lifetime (LT50, the time taken for luminance to decrease by 50%) reaching 1237 h at 1000 cd m−2, setting new benchmarks for blue Ph-OLEDs. To enhance the color purity, hyper-OLEDs were developed with a full width at half maximum (FWHM) of 20 nm and the CIEy of 0.233, achieving an EQEm of 29.78% and LT50 of 318 h at 1000 cd m−2. We also fabricated the active-matrix (AM) blue Hyper-OLEDs with 400 pixels per inch to demonstrate their application in AM displays.

Original languageEnglish (US)
Article number156
JournalLight: Science and Applications
Volume14
Issue number1
Early online dateApr 9 2025
DOIs
StateE-pub ahead of print - Apr 9 2025
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Exceptionally high brightness and long lifetime of efficient blue OLEDs for programmable active-matrix display'. Together they form a unique fingerprint.

Cite this