TY - JOUR

T1 - Exactly marginal operators and duality in four dimensional N = 1 supersymmetric gauge theory

AU - Leigh, Robert G.

AU - Strassler, Matthew J.

N1 - Funding Information:
1 Work supported in part by the Department of Energy, contract DE-FG05-90ER40559.

PY - 1995/7/31

Y1 - 1995/7/31

N2 - We show that manifolds of fixed points, which are generated by exactly marginal operators, are common in N = 1 supersymmetric gauge theory. We present a unified and simple prescription for identifying these operators, using tools similar to those employed in two-dimensional N = 2 supersymmetry. In particular we rely on the work of Shifman and Vainshtein relating the β-function of the gauge coupling to the anomalous dimensions of the matter fields. Finite N = 1 models, which have marginal operators at zero coupling, are easily identified using our approach. The method can also be employed to find manifolds of fixed points which do not include the free theory; these are seen in certain models with product gauge groups and in many non-renormalizable effective theories. For a number of our models, S-duality may have interesting implications. Using the fact that relevant perturbations often cause one manifold of fixed points to flow to another, we propose a specific mechanism through which the N = 1 duality discovered by Seiberg could be associated with the duality of finite N = 2 models.

AB - We show that manifolds of fixed points, which are generated by exactly marginal operators, are common in N = 1 supersymmetric gauge theory. We present a unified and simple prescription for identifying these operators, using tools similar to those employed in two-dimensional N = 2 supersymmetry. In particular we rely on the work of Shifman and Vainshtein relating the β-function of the gauge coupling to the anomalous dimensions of the matter fields. Finite N = 1 models, which have marginal operators at zero coupling, are easily identified using our approach. The method can also be employed to find manifolds of fixed points which do not include the free theory; these are seen in certain models with product gauge groups and in many non-renormalizable effective theories. For a number of our models, S-duality may have interesting implications. Using the fact that relevant perturbations often cause one manifold of fixed points to flow to another, we propose a specific mechanism through which the N = 1 duality discovered by Seiberg could be associated with the duality of finite N = 2 models.

UR - http://www.scopus.com/inward/record.url?scp=0002389406&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0002389406&partnerID=8YFLogxK

U2 - 10.1016/0550-3213(95)00261-P

DO - 10.1016/0550-3213(95)00261-P

M3 - Article

AN - SCOPUS:0002389406

SN - 0550-3213

VL - 447

SP - 95

EP - 133

JO - Nuclear Physics B

JF - Nuclear Physics B

IS - 1

ER -