Abstract
Members of the mechanistically diverse enoyl-CoA hydratase (crotonase) superfamily catalyze reactions that involve stabilization of an enolate anion derived from an acyl thioester of coenzyme A. 2-Ketocyclohexanecarboxyl-CoA hydrolase (BadI), found in a pathway for anaerobic degradation of benzoate by Rhodopseudomonas palustris, is a member of the crotonase superfamily that catalyzes a reverse Dieckmann reaction in which the substrate is hydrolyzed to pimelyl-CoA. The substrate is the configurationally labile 2S-ketocyclohexanecarboxyl-CoA, and in 2H2O solvent hydrogen is incorporated into the 2-proS position of the pimelyl-CoA product. Therefore, the stereochemical course of the BadI-catalyzed reaction is inversion. This information is important for understanding the roles of active-site functional groups in the active site of BadI as well as in the active sites of the homologous 1,4-dihydroxynaphthoyl-CoA synthases that catalyze a forward Dieckmann reaction.
Original language | English (US) |
---|---|
Pages (from-to) | 7188-7189 |
Number of pages | 2 |
Journal | Journal of the American Chemical Society |
Volume | 126 |
Issue number | 23 |
DOIs | |
State | Published - Jun 16 2004 |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry