Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation

Zhenrui Yue, Huimin Zeng, Yimeng Lu, Lanyu Shang, Yang Zhang, Dong Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.

Original languageEnglish (US)
Title of host publicationLong Papers
EditorsKevin Duh, Helena Gomez, Steven Bethard
PublisherAssociation for Computational Linguistics (ACL)
Pages5628-5643
Number of pages16
ISBN (Electronic)9798891761148
StatePublished - 2024
Event2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 - Hybrid, Mexico City, Mexico
Duration: Jun 16 2024Jun 21 2024

Publication series

NameProceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Volume1

Conference

Conference2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Country/TerritoryMexico
CityHybrid, Mexico City
Period6/16/246/21/24

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Software

Fingerprint

Dive into the research topics of 'Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation'. Together they form a unique fingerprint.

Cite this