Everything Evolves in Personalized PageRank

Zihao Li, Dongqi Fu, Jingrui He

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Personalized PageRank, as a graphical model, has been proven as an effective solution in many applications such as web page search, recommendation, etc. However, in the real world, the setting of personalized PageRank is usually dynamic like the evolving World Wide Web. On the one hand, the outdated PageRank solution can be sub-optimal for ignoring the evolution pattern. On the other hand, solving the solution from the scratch at each timestamp causes costly computation complexity. Hence, in this paper, we aim to solve the Personalized PageRank effectively and efficiently in a fully dynamic setting, i.e., every component in the Personalized PageRank formula is dependent on time. To this end, we propose the EvePPR method that can track the exact personalized PageRank solution at each timestamp in the fully dynamic setting, and we theoretically and empirically prove the accuracy and time complexity of EvePPR. Moreover, we apply EvePPR to solve the dynamic knowledge graph alignment task, where a fully dynamic setting is necessary but complex. The experiments show that EvePPR outperforms the state-of-the-art baselines for similar nodes retrieval across graphs.

Original languageEnglish (US)
Title of host publicationACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023
PublisherAssociation for Computing Machinery
Number of pages11
ISBN (Electronic)9781450394161
StatePublished - Apr 30 2023
Event2023 World Wide Web Conference, WWW 2023 - Austin, United States
Duration: Apr 30 2023May 4 2023

Publication series

NameACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023


Conference2023 World Wide Web Conference, WWW 2023
Country/TerritoryUnited States


  • Knowledge Graphs
  • Personalized PageRank
  • Similarly Retrieval

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software


Dive into the research topics of 'Everything Evolves in Personalized PageRank'. Together they form a unique fingerprint.

Cite this