Event-related potentials reveal age differences in the encoding and recognition of scenes

Angela H. Gutchess, Yoko Ieuji, Kara D. Federmeier

Research output: Contribution to journalArticlepeer-review

Abstract

The present study used event-related potentials (ERPs) to investigate how the encoding and recognition of complex scenes change with normal aging. Although functional magnetic resonance imaging (fMRI) studies have identified more drastic age impairments at encoding than at recognition, ERP studies accumulate more evidence for age differences at retrieval. However, stimulus type and paradigm differences across the two literatures have made direct comparisons difficult. Here, we collected young and elderly adults' encoding- and recognition-phase ERPs using the same materials and paradigm as a previous fMRI study [Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L., et al. Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial temporal activity. Journal of Cognitive Neuroscience, 17, 84-96, 2005]. Twenty young and 20 elderly adults incidentally encoded and then recognized photographs of outdoor scenes. During encoding, young adults showed a frontocentral subsequent memory effect, with high-confidence hits exhibiting greater positivity than misses. Elderly adults showed a similar subsequent memory effect, which, however, did not differ as a function of confidence. During recognition, young adults elicited a widespread old/new effect, and high-confidence hits were distinct from both low-confidence hits and false alarms. Elderly adults elicited a smaller and later old/new effect, which was unaffected by confidence, and hits and false alarms were indistinguishable in the waveforms. Consistent with prior ERP work, these results point to important age-related changes in recognition-phase brain activity, even when behavioral measures of memory and confidence pattern similarly across groups. We speculate that memory processes with different time signatures contribute to the apparent differences across encoding and retrieval stages, and across methods.

Original languageEnglish (US)
Pages (from-to)1089-1103
Number of pages15
JournalJournal of cognitive neuroscience
Volume19
Issue number7
DOIs
StatePublished - Jul 2007

ASJC Scopus subject areas

  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Event-related potentials reveal age differences in the encoding and recognition of scenes'. Together they form a unique fingerprint.

Cite this