Abstract
3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
Original language | English (US) |
---|---|
Article number | A69 |
Journal | Astronomy and Astrophysics |
Volume | 640 |
DOIs | |
State | Published - Aug 1 2020 |
Keywords
- Galaxies: active
- Galaxies: individual: 3C 279
- Galaxies: jets
- Techniques: interferometric
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Fingerprint
Dive into the research topics of 'Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Astronomy and Astrophysics, Vol. 640, A69, 01.08.2020.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
AU - Kim, Jae Young
AU - Krichbaum, Thomas P.
AU - Broderick, Avery E.
AU - Wielgus, Maciek
AU - Blackburn, Lindy
AU - Gómez, José L.
AU - Johnson, Michael D.
AU - Bouman, Katherine L.
AU - Chael, Andrew
AU - Akiyama, Kazunori
AU - Jorstad, Svetlana
AU - Marscher, Alan P.
AU - Issaoun, Sara
AU - Janssen, Michael
AU - Chan, Chi Kwan
AU - Savolainen, Tuomas
AU - Pesce, Dominic W.
AU - Özel, Feryal
AU - Alberdi, Antxon
AU - Alef, Walter
AU - Asada, Keiichi
AU - Azulay, Rebecca
AU - Baczko, Anne Kathrin
AU - Ball, David
AU - Baloković, Mislav
AU - Barrett, John
AU - Bintley, Dan
AU - Boland, Wilfred
AU - Bower, Geoffrey C.
AU - Bremer, Michael
AU - Brinkerink, Christiaan D.
AU - Brissenden, Roger
AU - Britzen, Silke
AU - Broguiere, Dominique
AU - Bronzwaer, Thomas
AU - Byun, Do Young
AU - Carlstrom, John E.
AU - Chatterjee, Shami
AU - Chatterjee, Koushik
AU - Chen, Ming Tang
AU - Chen, Yongjun
AU - Cho, Ilje
AU - Christian, Pierre
AU - Conway, John E.
AU - Cordes, James M.
AU - Crew, Geoffrey B.
AU - Cui, Yuzhu
AU - Davelaar, Jordy
AU - De Laurentis, Mariafelicia
AU - Deane, Roger
AU - Dempsey, Jessica
AU - Desvignes, Gregory
AU - Dexter, Jason
AU - Doeleman, Sheperd S.
AU - Eatough, Ralph P.
AU - Falcke, Heino
AU - Fish, Vincent L.
AU - Fomalont, Ed
AU - Fraga-Encinas, Raquel
AU - Friberg, Per
AU - Fromm, Christian M.
AU - Galison, Peter
AU - Gammie, Charles F.
AU - García, Roberto
AU - Gentaz, Olivier
AU - Georgiev, Boris
AU - Goddi, Ciriaco
AU - Gold, Roman
AU - Gómez-Ruiz, Arturo I.
AU - Gu, Minfeng
AU - Gurwell, Mark
AU - Hada, Kazuhiro
AU - Hecht, Michael H.
AU - Hesper, Ronald
AU - Ho, Luis C.
AU - Ho, Paul
AU - Honma, Mareki
AU - Huang, Chih Wei L.
AU - Lei, Huang
AU - Hughes, David H.
AU - Ikeda, Shiro
AU - Inoue, Makoto
AU - James, David J.
AU - Jannuzi, Buell T.
AU - Jeter, Britton
AU - Wu, Jiang
AU - Jimenez-Rosales, Alejandra
AU - Jung, Taehyun
AU - Karami, Mansour
AU - Karuppusamy, Ramesh
AU - Kawashima, Tomohisa
AU - Keating, Garrett K.
AU - Kettenis, Mark
AU - Kim, Junhan
AU - Kim, Jongsoo
AU - Kino, Motoki
AU - Koay, Jun Yi
AU - Koch, Patrick M.
AU - Koyama, Shoko
AU - Kramer, Michael
AU - Kramer, Carsten
AU - Kuo, Cheng Yu
AU - Lauer, Tod R.
AU - Lee, Sang Sung
AU - Li, Yan Rong
AU - Li, Zhiyuan
AU - Lindqvist, Michael
AU - Lico, Rocco
AU - Kuo, Liu
AU - Liuzzo, Elisabetta
AU - Lo, Wen Ping
AU - Lobanov, Andrei P.
AU - Loinard, Laurent
AU - Lonsdale, Colin
AU - Lu, Ru Sen
AU - Macdonald, Nicholas R.
AU - Mao, Jirong
AU - Markoff, Sera
AU - Marrone, Daniel P.
AU - Martí-Vidal, Iván
AU - Matsushita, Satoki
AU - Matthews, Lynn D.
AU - Medeiros, Lia
AU - Menten, Karl M.
AU - Mizuno, Yosuke
AU - Mizuno, Izumi
AU - Moran, James M.
AU - Moriyama, Kotaro
AU - Moscibrodzka, Monika
AU - Musoke, Gibwa
AU - Müller, Cornelia
AU - Nagai, Hiroshi
AU - Nagar, Neil M.
AU - Nakamura, Masanori
AU - Narayan, Ramesh
AU - Narayanan, Gopal
AU - Natarajan, Iniyan
AU - Neri, Roberto
AU - Ni, Chunchong
AU - Noutsos, Aristeidis
AU - Okino, Hiroki
AU - Olivares, Héctor
AU - Ortiz-León, Gisela N.
AU - Oyama, Tomoaki
AU - Palumbo, Daniel C.M.
AU - Park, Jongho
AU - Patel, Nimesh
AU - Pen, Ue Li
AU - Piétu, Vincent
AU - Plambeck, Richard
AU - Popstefanija, Aleksandar
AU - Porth, Oliver
AU - Ben, Prather
AU - Preciado-López, Jorge A.
AU - Psaltis, Dimitrios
AU - Pu, Hung Yi
AU - Ramakrishnan, Venkatessh
AU - Rao, Ramprasad
AU - Rawlings, Mark G.
AU - Raymond, Alexander W.
AU - Rezzolla, Luciano
AU - Ripperda, Bart
AU - Roelofs, Freek
AU - Rogers, Alan
AU - Ros, Eduardo
AU - Rose, Mel
AU - Roshanineshat, Arash
AU - Rottmann, Helge
AU - Roy, Alan L.
AU - Ruszczyk, Chet
AU - Ryan, Benjamin R.
AU - Rygl, Kazi L.J.
AU - Sánchez, Salvador
AU - Sánchez-Arguelles, David
AU - Sasada, Mahito
AU - Schloerb, F. Peter
AU - Schuster, Karl Friedrich
AU - Shao, Lijing
AU - Shen, Zhiqiang
AU - Small, Des
AU - Sohn, Bong Won
AU - Soohoo, Jason
AU - Tazaki, Fumie
AU - Tiede, Paul
AU - Tilanus, Remo P.J.
AU - Titus, Michael
AU - Toma, Kenji
AU - Torne, Pablo
AU - Trent, Tyler
AU - Traianou, Efthalia
AU - Trippe, Sascha
AU - Tsuda, Shuichiro
AU - Van Bemmel, Ilse
AU - Van Langevelde, Huib Jan
AU - Van Rossum, Daniel R.
AU - Jan, Wagner
AU - Wardle, John
AU - Ward-Thompson, Derek
AU - Weintroub, Jonathan
AU - Wex, Norbert
AU - Wharton, Robert
AU - Wong, George N.
AU - Wu, Qingwen
AU - Yoon, Doosoo
AU - Young, André
AU - Young, Ken
AU - Younsi, Ziri
AU - Feng, Yuan
AU - Yuan, Ye Fei
AU - Zensus, J. Anton
AU - Zhao, Guangyao
AU - Zhao, Shan Shan
AU - Zhu, Ziyan
AU - Algaba, Juan Carlos
AU - Allardi, Alexander
AU - Amestica, Rodrigo
AU - Anczarski, Jadyn
AU - Bach, Uwe
AU - Baganoff, Frederick K.
AU - Beaudoin, Christopher
AU - Benson, Bradford A.
AU - Berthold, Ryan
AU - Blanchard, Jay M.
AU - Blundell, Ray
AU - Bustamente, Sandra
AU - Cappallo, Roger
AU - Castillo-Domínguez, Edgar
AU - Chang, Chih Cheng
AU - Chang, Shu Hao
AU - Chang, Song Chu
AU - Chen, Chung Chen
AU - Chilson, Ryan
AU - Chuter, Tim C.
AU - Rosado, Rodrigo Córdova
AU - Coulson, Iain M.
AU - Crowley, Joseph
AU - Derome, Mark
AU - Dexter, Matthew
AU - Dornbusch, Sven
AU - Dudevoir, Kevin A.
AU - Dzib, Sergio A.
AU - Eckart, Andreas
AU - Eckert, Chris
AU - Erickson, Neal R.
AU - Everett, Wendeline B.
AU - Faber, Aaron
AU - Farah, Joseph R.
AU - Fath, Vernon
AU - Folkers, Thomas W.
AU - Forbes, David C.
AU - Freund, Robert
AU - Gale, David M.
AU - Feng, Gao
AU - Geertsema, Gertie
AU - Graham, David A.
AU - Greer, Christopher H.
AU - Grosslein, Ronald
AU - Gueth, Frédéric
AU - Haggard, Daryl
AU - Halverson, Nils W.
AU - Han, Chih Chiang
AU - Han, Kuo Chang
AU - Hao, Jinchi
AU - Hasegawa, Yutaka
AU - Henning, Jason W.
AU - Hernández-Gómez, Antonio
AU - Herrero-Illana, Rubén
AU - Heyminck, Stefan
AU - Hirota, Akihiko
AU - Hoge, James
AU - Huang, Yau De
AU - Violette Impellizzeri, C. M.
AU - Jiang, Homin
AU - John, David
AU - Kamble, Atish
AU - Keisler, Ryan
AU - Kimura, Kimihiro
AU - Kono, Yusuke
AU - Kubo, Derek
AU - Kuroda, John
AU - Lacasse, Richard
AU - Laing, Robert A.
AU - Leitch, Erik M.
AU - Li, Chao Te
AU - Lin, Lupin C.C.
AU - Liu, Ching Tang
AU - Liu, Kuan Yu
AU - Lu, Li Ming
AU - Marson, Ralph G.
AU - Martin-Cocher, Pierre L.
AU - Massingill, Kyle D.
AU - Matulonis, Callie
AU - Mccoll, Martin P.
AU - Mcwhirter, Stephen R.
AU - Messias, Hugo
AU - Zheng, Meyer Zhao
AU - Michalik, Daniel
AU - Montaña, Alfredo
AU - Montgomerie, William
AU - Mora-Klein, Matias
AU - Muders, Dirk
AU - Nadolski, Andrew
AU - Navarro, Santiago
AU - Neilsen, Joseph
AU - Nguyen, Chi H.
AU - Nishioka, Hiroaki
AU - Norton, Timothy
AU - Nowak, Michael A.
AU - Nystrom, George
AU - Ogawa, Hideo
AU - Oshiro, Peter
AU - Parsons, Harriet
AU - Juan, Peñalver
AU - Phillips, Neil M.
AU - Poirier, Michael
AU - Pradel, Nicolas
AU - Primiani, Rurik A.
AU - Raffin, Philippe A.
AU - Rahlin, Alexandra S.
AU - Reiland, George
AU - Risacher, Christopher
AU - Ruiz, Ignacio
AU - Sáez-Madaín, Alejandro F.
AU - Sassella, Remi
AU - Schellart, Pim
AU - Shaw, Paul
AU - Silva, Kevin M.
AU - Shiokawa, Hotaka
AU - Smith, David R.
AU - Snow, William
AU - Souccar, Kamal
AU - Sousa, Don
AU - Sridharan, Tirupati K.
AU - Srinivasan, Ranjani
AU - Stahm, William
AU - Stark, Antony A.
AU - Story, Kyle
AU - Timmer, Sjoerd T.
AU - Vertatschitsch, Laura
AU - Walther, Craig
AU - Wei, Ta Shun
AU - Whitehorn, Nathan
AU - Whitney, Alan R.
AU - Woody, David P.
AU - Wouterloot, Jan G.A.
AU - Wright, Melvin
AU - Yamaguchi, Paul
AU - Yu, Chen Yu
AU - Zeballos, Milagros
AU - Zhang, Shuo
AU - Ziurys, Lucy
N1 - Funding Information: The authors of the present paper thank the following organizations and programs: the Academy of Finland (projects 274477, 284495, 312496); the Advanced European Network of E-infrastructures for Astronomy with the SKA (AENEAS) project, supported by the European Commission Framework Programme Horizon 2020 Research and Innovation action under grant agreement 731016; the Alexander von Humboldt Stiftung; the Black Hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Comisi?n Nacional de Investigaci?n Cient?fica y Tecnol?gica (CONICYT, Chile, via PIA ACT172033, Fondecyt projects 1171506 and 3190878, BASAL AFB-170002, ALMA-conicyt 31140007); Consejo Nacional de Ciencia y Tecnolog?a (CONACYT, Mexico, projects 104497, 275201, 279006, 281692); the Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute; Direcci?n General de Asuntos del Personal Acad?mico - Universidad Nacional Aut?noma de M?xico (DGAPA - UNAM, project IN112417); the European Research Council Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" (grant 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177 and Gent Program (project CIDEGENT/2018/021); the Gordon and Betty Moore Foundation (grants GBMF-3561, GBMF-5278); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; the Jansky Fellowship program of the National Radio Astronomy Observatory (NRAO); the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in- Aid for JSPS Research Fellowship (JP17J08829); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants QYZDJSSW- SLH057, QYZDJ-SSW-SYS008, ZDBS-LY-SLH011); the Leverhulme Trust Early Career Research Fellowship; the Malaysian Fundamental Research Grant Scheme (FRGS, grant FRGS/1/2019/STG02/UM/02/6); the Max-Planck- Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (grants 18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007); the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119-M-001-027, 107-2119-M-001-017, 107-2119-M-001-020, and 107- 2119-M-110-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC17K0649 and Hubble Fellowship grant HST-HF2-51431.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSF, grants AST-0096454, AST-0352953, AST-0521233, AST-0705062, AST-0905844, AST-0922984, AST-1126433, AST-1140030, DGE-1144085, AST-1207704, AST-1207730, AST-1207752, MRI-1228509, OPP-1248097, AST-1310896, AST-1312651, AST-1337663, AST-1440254, AST-1555365, AST-1715061, AST-1615796, AST-1716327, OISE-1743747, AST-1816420); the Natural Science Foundation of China (grants 11573051, 11633006, 11650110427, 10625314, 11721303, 11725312, 11933007); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Youth Thousand Talents Program of China; the National Research Foundation of Korea (the Global PhD Fellowship Grant: grants NRF-2015H1A2A1033752, 2015-R1D1A1A01056807, the Korea Research Fellowship Program: NRF-2015H1D3A1066561); the Netherlands Organization for Scientific Research (NWO) VICI award (grant 639.043.513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa; the Onsala Space Observatory (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under grant 2017-00648) the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Russian Science Foundation (grant 17-12-01029); the Spanish Ministerio de Econom?a y Competitividad (grants PGC2018-098915-B-C21, AYA2016- 80889-P); the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrof?sica de Andaluc?a (SEV-2017-0709); the Toray Science Foundation; the US Department of Energy (USDOE) through the Los Alamos National Laboratory (operated by Triad National Security, LLC, for the National Nuclear Security Administration of the USDOE (Contract 89233218CNA000001)); Publisher Copyright: © J.-Y. Kim et al. 2020.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
AB - 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
KW - Galaxies: active
KW - Galaxies: individual: 3C 279
KW - Galaxies: jets
KW - Techniques: interferometric
UR - http://www.scopus.com/inward/record.url?scp=85087444933&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087444933&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202037493
DO - 10.1051/0004-6361/202037493
M3 - Article
AN - SCOPUS:85087444933
SN - 0004-6361
VL - 640
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A69
ER -