Evaluation of laboratory and field experimentation characterizing concrete crosstie rail seat load distributions

Matthew J. Greve, Marcus S. Dersch, J. Riley Edwards, Christopher P.L. Barkan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As higher demands are placed on North American railroad infrastructure by heavy haul traffic, it is increasingly important to understand the factors affecting the magnitude and distribution of load imparted to concrete crosstie rail seats. The rail seat load distribution is critical to the analysis of failure mechanisms associated with rail seat deterioration (RSD), the degradation of the concrete surface at the crosstie rail seat. RSD can lead to wide gauge, cant deficiency, and an increased risk of rail rollover, and is therefore of primary concern to Class I Freight Railroads in North America. Researchers at the University of Illinois at Urbana-Champaign (UIUC) have successfully characterized the loading environment at the rail seat using matrix-based tactile surface sensors (MBTSS). Previous research has proven the feasibility of using MBTSS in both laboratory and field applications, and recent field experimentation has yielded several hypotheses concerning the effect of fastening system wear on the rail seat load distribution. This paper will focus on the analysis of data gathered from laboratory experimentation with MBTSS to evaluate these hypotheses, and will propose a metric for crosstie and fastening system design which considers the uniformity of the load distribution. The knowledge gained from this experimentation will be integrated with associated research conducted at UIUC to form the framework for a mechanistic design approach for concrete crossties and fastening systems.

Original languageEnglish (US)
Title of host publication2015 Joint Rail Conference, JRC 2015
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791856451
DOIs
StatePublished - 2015
EventASME/ASCE/IEEE 2015 Joint Rail Conference, JRC 2015 - San Jose, United States
Duration: Mar 23 2015Mar 26 2015

Publication series

Name2015 Joint Rail Conference, JRC 2015

Other

OtherASME/ASCE/IEEE 2015 Joint Rail Conference, JRC 2015
Country/TerritoryUnited States
CitySan Jose
Period3/23/153/26/15

ASJC Scopus subject areas

  • Transportation
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Evaluation of laboratory and field experimentation characterizing concrete crosstie rail seat load distributions'. Together they form a unique fingerprint.

Cite this