Evaluation of clear-sky incoming radiation estimating equations typically used in remote sensing evapotranspiration algorithms

Zhigang Sun, Mekonnen Gebremichael, Qinxue Wang, Junming Wang, Ted W. Sammis, Alecia Nickless

Research output: Contribution to journalArticlepeer-review

Abstract

Net radiation is a key component of the energy balance, whose estimation accuracy has an impact on energy flux estimates from satellite data. In typical remote sensing evapotranspiration (ET) algorithms, the outgoing shortwave and longwave components of net radiation are obtained from remote sensing data, while the incoming shortwave (RS ) and longwave (RL ) components are typically estimated from weather data using empirical equations. This study evaluates the accuracy of empirical equations commonly used in remote sensing ET algorithms for estimating RS and RL radiation. Evaluation is carried out through comparison of estimates and observations at five sites that represent different climatic regions from humid to arid. Results reveal (1) both RS and RL estimates from all evaluated equations well correlate with observations (R2 ≥ 0.92), (2) RS estimating equations tend to overestimate, especially at higher values, (3) RL estimating equations tend to give more biased values in arid and semi-arid regions, (4) a model that parameterizes the diffuse component of radiation using two clearness indices and a simple model that assumes a linear increase of atmospheric transmissivity with elevation give better RS estimates, and (5) mean relative absolute errors in the net radiation (Rn) estimates caused by the use of RS and RL estimating equations varies from 10% to 22%. This study suggests that Rn estimates using recommended incoming radiation estimating equations could improve ET estimates.

Original languageEnglish (US)
Pages (from-to)4735-4752
Number of pages18
JournalRemote Sensing
Volume5
Issue number10
DOIs
StatePublished - Oct 9 2013

Keywords

  • Incoming longwave radiation
  • Incoming shortwave radiation
  • Net radiation

ASJC Scopus subject areas

  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'Evaluation of clear-sky incoming radiation estimating equations typically used in remote sensing evapotranspiration algorithms'. Together they form a unique fingerprint.

Cite this