TY - GEN
T1 - Evaluating the seismic hazard in Anchorage, Alaska
AU - Wong, Ivan
AU - Dawson, Timothy
AU - Dober, Mark
AU - Hashash, Youssef
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2010
Y1 - 2010
N2 - Anchorage is situated in one of the most seismically active regions in the U.S. The Alaskan subduction zone, which underlies the city, is the source of the 1964 moment magnitude (M) 9.2 Great Alaskan earthquake. Intraslab and crustal earthquakes could also generate future strong ground shaking in the city. A sitespecific probabilistic seismic hazard analysis (PSHA) of the Port of Anchorage was performed to estimate future levels of ground motions. The Alaskan subduction zone, both the megathrust and Wadati-Benioff zone, crustal faults, and crustal background seismicity were included in the PSHA. Several Quaternaryactive and potentially Quaternary-active structures within the Cook Inlet were included as seismic sources. The new Next Generation of Attenuation (NGA) relationships for crustal earthquakes and recent attenuation models for subduction zones were selected for use in the PSHA. Based on these input, we calculated sitespecific probabilistic hazard for a firm rock site condition. The 2,475-year return period PGA at the Port is 0.58 g. The intraslab zone dominates the PGA hazard at all return periods. The intraslab zone and the 1964 segment control the longperiod (> 1.0 sec) hazard. The Castle Mountain fault, the closest significant crustal fault to the site, is not a major contributor to the probabilistic hazard in Anchorage.
AB - Anchorage is situated in one of the most seismically active regions in the U.S. The Alaskan subduction zone, which underlies the city, is the source of the 1964 moment magnitude (M) 9.2 Great Alaskan earthquake. Intraslab and crustal earthquakes could also generate future strong ground shaking in the city. A sitespecific probabilistic seismic hazard analysis (PSHA) of the Port of Anchorage was performed to estimate future levels of ground motions. The Alaskan subduction zone, both the megathrust and Wadati-Benioff zone, crustal faults, and crustal background seismicity were included in the PSHA. Several Quaternaryactive and potentially Quaternary-active structures within the Cook Inlet were included as seismic sources. The new Next Generation of Attenuation (NGA) relationships for crustal earthquakes and recent attenuation models for subduction zones were selected for use in the PSHA. Based on these input, we calculated sitespecific probabilistic hazard for a firm rock site condition. The 2,475-year return period PGA at the Port is 0.58 g. The intraslab zone dominates the PGA hazard at all return periods. The intraslab zone and the 1964 segment control the longperiod (> 1.0 sec) hazard. The Castle Mountain fault, the closest significant crustal fault to the site, is not a major contributor to the probabilistic hazard in Anchorage.
UR - http://www.scopus.com/inward/record.url?scp=84867155793&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867155793&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84867155793
SN - 9781617388446
T3 - 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium
SP - 3199
EP - 3208
BT - 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium
T2 - 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium
Y2 - 25 July 2010 through 29 July 2010
ER -