Abstract
This paper proposes a method to estimate the curvature of an interface represented implicitly by discrete volume fractions on an unstructured two-dimensional mesh. The method relies on the computation of local parabolic reconstructions of the interface. The parabolic reconstruction of the interface in a given computational cell is obtained by solving a local non-linear minimisation problem, and only requires additional information from two neighbouring cells. This compactness ensures a robust behaviour on poorly-resolved interfaces. The proposed method is proven to be analogous to the height-function method for Cartesian configurations with consistent heights, and can be interpreted as a generalisation of the height-function method to meshes of any type. Tests are conducted on a range of interfaces with known curvature. The method is shown to converge with mesh refinement with the same order of accuracy as the height-function method for all three types of meshes tested, i.e. Cartesian, triangular, and polygonal.
Original language | English (US) |
---|---|
Pages (from-to) | 271-294 |
Number of pages | 24 |
Journal | Journal of Computational Physics |
Volume | 351 |
DOIs | |
State | Published - Dec 15 2017 |
Externally published | Yes |
Keywords
- Curvature
- Height-function
- Unstructured mesh
- Volume fraction
- Volume-of-fluid
ASJC Scopus subject areas
- Numerical Analysis
- Modeling and Simulation
- Physics and Astronomy (miscellaneous)
- General Physics and Astronomy
- Computer Science Applications
- Computational Mathematics
- Applied Mathematics