Estimating object hardness with a GelSight touch sensor

Wenzhen Yuan, Mandayam A. Srinivasan, Edward H. Adelson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Hardness sensing is a valuable capability for a robot touch sensor. We describe a novel method of hardness sensing that does not require accurate control of contact conditions. A GelSight sensor is a tactile sensor that provides high resolution tactile images, which enables a robot to infer object properties such as geometry and fine texture, as well as contact force and slip conditions. The sensor is pressed on silicone samples by a human or a robot and we measure the sample hardness only with data from the sensor, without a separate force sensor and without precise knowledge of the contact trajectory. We describe the features that show object hardness. For hemispherical objects, we develop a model to measure the sample hardness, and the estimation error is about 4% in the range of 8 Shore 00 to 45 Shore A. With this technology, a robot is able to more easily infer the hardness of the touched objects, thereby improving its object recognition as well as manipulation strategy.

Original languageEnglish (US)
Title of host publicationIROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages208-215
Number of pages8
ISBN (Electronic)9781509037629
DOIs
StatePublished - Nov 28 2016
Externally publishedYes
Event2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016 - Daejeon, Korea, Republic of
Duration: Oct 9 2016Oct 14 2016

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2016-November
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Country/TerritoryKorea, Republic of
CityDaejeon
Period10/9/1610/14/16

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Estimating object hardness with a GelSight touch sensor'. Together they form a unique fingerprint.

Cite this