Estimating concentration of ultrasound contrast agents with backscatter coefficients: Experimental and theoretical aspects

Scott M. Leithem, Roberto J. Lavarello, William D. O'Brien, Michael L. Oelze

Research output: Contribution to journalArticlepeer-review

Abstract

Ultrasound contrast agents (UCAs) have been explored as a means to enhance therapeutic techniques. Because the effectiveness of these techniques relies on the UCA concentration at a target site, it would be beneficial to estimate UCA concentration noninvasively. In this study, a noninvasive method for estimating UCA concentration was developed in vitro. Backscatter coefficients (BSCs) estimated from measurements of Definity UCAs were fitted to a theoretical scattering model in the 15-25 MHz range using a Levenberg-Marquardt regression technique. The model was defined by the UCA size distribution and concentration, and therefore concentration estimates were extracted directly from the fit. Calculation of the BSC was accomplished using planar reference measurements from the back wall of a Plexiglas chamber and an average of 500 snapshots of ultrasonic backscatter from UCAs flowing through the chamber. In order to verify the ultrasonically derived UCA concentration estimates, a sample of the UCAs was extracted from the flow path and the concentration was estimated with a hemacytometer. UCA concentrations of 1, 2, and 5 times the dose recommended by the manufacturer were used in experiments. All BSC-based estimates were within one standard deviation of hemacytometer based estimates for peak rarefactional pressures of 100-400 kPa.

Original languageEnglish (US)
Pages (from-to)2295-2305
Number of pages11
JournalJournal of the Acoustical Society of America
Volume131
Issue number3
DOIs
StatePublished - Mar 2012

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Acoustics and Ultrasonics

Fingerprint Dive into the research topics of 'Estimating concentration of ultrasound contrast agents with backscatter coefficients: Experimental and theoretical aspects'. Together they form a unique fingerprint.

Cite this