TY - JOUR
T1 - Error bounds for compressed sensing algorithms with group sparsity
T2 - A unified approach
AU - Ahsen, M. Eren
AU - Vidyasagar, M.
N1 - Publisher Copyright:
© 2015 The Authors
PY - 2017/9
Y1 - 2017/9
N2 - In compressed sensing, in order to recover a sparse or nearly sparse vector from possibly noisy measurements, the most popular approach is ℓ1-norm minimization. Upper bounds for the ℓ2-norm of the error between the true and estimated vectors are given in [1] and reviewed in [2], while bounds for the ℓ1-norm are given in [3]. When the unknown vector is not conventionally sparse but is “group sparse” instead, a variety of alternatives to the ℓ1-norm have been proposed in the literature, including the group LASSO, sparse group LASSO, and group LASSO with tree structured overlapping groups. However, no error bounds are available for any of these modified objective functions. In the present paper, a unified approach is presented for deriving upper bounds on the error between the true vector and its approximation, based on the notion of decomposable and γ-decomposable norms. The bounds presented cover all of the norms mentioned above, and also provide a guideline for choosing norms in future to accommodate alternate forms of sparsity.
AB - In compressed sensing, in order to recover a sparse or nearly sparse vector from possibly noisy measurements, the most popular approach is ℓ1-norm minimization. Upper bounds for the ℓ2-norm of the error between the true and estimated vectors are given in [1] and reviewed in [2], while bounds for the ℓ1-norm are given in [3]. When the unknown vector is not conventionally sparse but is “group sparse” instead, a variety of alternatives to the ℓ1-norm have been proposed in the literature, including the group LASSO, sparse group LASSO, and group LASSO with tree structured overlapping groups. However, no error bounds are available for any of these modified objective functions. In the present paper, a unified approach is presented for deriving upper bounds on the error between the true vector and its approximation, based on the notion of decomposable and γ-decomposable norms. The bounds presented cover all of the norms mentioned above, and also provide a guideline for choosing norms in future to accommodate alternate forms of sparsity.
KW - Compressed sensing
KW - Error bounds
KW - Group restricted isometry property
KW - Group sparsity
UR - http://www.scopus.com/inward/record.url?scp=84951919782&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84951919782&partnerID=8YFLogxK
U2 - 10.1016/j.acha.2015.11.006
DO - 10.1016/j.acha.2015.11.006
M3 - Article
AN - SCOPUS:84951919782
SN - 1063-5203
VL - 43
SP - 212
EP - 232
JO - Applied and Computational Harmonic Analysis
JF - Applied and Computational Harmonic Analysis
IS - 2
ER -