TY - PAT
T1 - Enzyme inhibiting compounds and methods
AU - Yang, Ke
AU - Oldfield, Eric
AU - Zhang, Yonghui
AU - Wang, Weixue
N1 - GOVERNMENT SUPPORT This invention was made with government support under Grant Nos. GM073216, GM65307, and AI074233, awarded by the United States Public Health Service, National Institutes of Health. The United States Government has certain rights in the invention.
PY - 2013/12/17
Y1 - 2013/12/17
N2 - The invention provides compounds, compositions, and methods for studying the Rohmer pathway and for treating bacterial infections or parasitic infections. The parasitic infection can be a protozoan infection, such as malaria. The compounds and compositions can also be used as antibiotics, for example, to kill bacteria or parasites, or to inhibit bacterial or parasite growth. The invention further provides inhibitors of isoprenoid biosynthesis enzymes, and methods of inhibiting the activity of isoprenoid biosynthesis enzymes. The compounds can be, for example, alkynes or allenes that bind to a unique Fe of an Fe4S4 cluster of an isoprenoid biosynthesis enzyme.
AB - The invention provides compounds, compositions, and methods for studying the Rohmer pathway and for treating bacterial infections or parasitic infections. The parasitic infection can be a protozoan infection, such as malaria. The compounds and compositions can also be used as antibiotics, for example, to kill bacteria or parasites, or to inhibit bacterial or parasite growth. The invention further provides inhibitors of isoprenoid biosynthesis enzymes, and methods of inhibiting the activity of isoprenoid biosynthesis enzymes. The compounds can be, for example, alkynes or allenes that bind to a unique Fe of an Fe4S4 cluster of an isoprenoid biosynthesis enzyme.
M3 - Patent
M1 - 8609638
Y2 - 2010/10/08
ER -