Entanglement monotones for W-type states

Eric Chitambar, Wei Cui, Hoi Kwong Lo

Research output: Contribution to journalArticlepeer-review

Abstract

In this article, we extend recent results concerning random-pair Einstein-Podolsky-Rosen distillation and the operational gap between separable operations (SEPs) and local operations with classical communication (LOCC). In particular, we consider the problem of obtaining bipartite maximal entanglement from an N-qubit W-class state (i.e., that of the form √x 0|000+√x 1|100++√x n|00) when the target pairs are a priori unspecified. We show that when x 0=0, the optimal probabilities for SEPs can be computed using semidefinite programming. On the other hand, to bound the optimal probabilities achievable by LOCC, we introduce entanglement monotones defined on the N-qubit W class of states. The LOCC monotones we construct can be increased by SEPs, and in terms of transformation success probability, we are able to quantify a gap as large as 37% between the two classes. Additionally, we demonstrate transformations ρ -n→σ -n that are feasible by SEP for any n but impossible by LOCC.

Original languageEnglish (US)
Article number062316
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume85
Issue number6
DOIs
StatePublished - Jun 19 2012
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Entanglement monotones for W-type states'. Together they form a unique fingerprint.

Cite this