Ensuring User-side Fairness in Dynamic Recommender Systems

Hyunsik Yoo, Zhichen Zeng, Jian Kang, Ruizhong Qiu, David Zhou, Zhining Liu, Fei Wang, Charlie Xu, Eunice Chan, Hanghang Tong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

User-side group fairness is crucial for modern recommender systems, alleviating performance disparities among user groups defined by sensitive attributes like gender, race, or age. In the everevolving landscape of user-item interactions, continual adaptation to newly collected data is crucial for recommender systems to stay aligned with the latest user preferences. However, we observe that such continual adaptation often worsen performance disparities. This necessitates a thorough investigation into user-side fairness in dynamic recommender systems. This problem is challenging due to distribution shifts, frequent model updates, and nondifferentiability of ranking metrics. To our knowledge, this paper presents the first principled study on ensuring user-side fairness in dynamic recommender systems. We start with theoretical analyses on fine-tuning v.s. retraining, showing that the best practice is incremental fine-tuning with restart. Guided by our theoretical analyses, we propose FAir Dynamic rEcommender (FADE), an end-to-end fine-tuning framework to dynamically ensure user-side fairness over time. To overcome the non-differentiability of recommendation metrics in the fairness loss, we further introduce Differentiable Hit (DH) as an improvement over the recent NeuralNDCG method, not only alleviating its gradient vanishing issue but also achieving higher efficiency. Besides that, we also address the instability issue of the fairness loss by leveraging the competing nature between the recommendation loss and the fairness loss. Through extensive experiments on real-world datasets, we demonstrate that FADE effectively and efficiently reduces performance disparities with little sacrifice in the overall recommendation performance.

Original languageEnglish (US)
Title of host publicationWWW 2024 - Proceedings of the ACM Web Conference
PublisherAssociation for Computing Machinery
Pages3667-3678
Number of pages12
ISBN (Electronic)9798400701719
DOIs
StatePublished - May 13 2024
Event33rd ACM Web Conference, WWW 2024 - Singapore, Singapore
Duration: May 13 2024May 17 2024

Publication series

NameWWW 2024 - Proceedings of the ACM Web Conference

Conference

Conference33rd ACM Web Conference, WWW 2024
Country/TerritorySingapore
CitySingapore
Period5/13/245/17/24

Keywords

  • dynamic updates
  • recommender systems
  • user-side fairness

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Ensuring User-side Fairness in Dynamic Recommender Systems'. Together they form a unique fingerprint.

Cite this