Enhanced Compiler Bug Isolation via Memoized Search

Junjie Chen, Haoyang Ma, Lingming Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Compiler bugs can be disastrous since they could affect all the software systems built on the buggy compilers. Meanwhile, diagnosing compiler bugs is extremely challenging since usually limited debugging information is available and a large number of compiler files can be suspicious. More specifically, when compiling a given bug-triggering test program, hundreds of compiler files are usually involved, and can all be treated as suspicious buggy files. To facilitate compiler debugging, in this paper we propose the first reinforcement compiler bug isolation approach via structural mutation, called RecBi. For a given bug-triggering test program, RecBi first augments traditional local mutation operators with structural ones to transform it into a set of passing test programs. Since not all the passing test programs can help isolate compiler bugs effectively, RecBi further leverages reinforcement learning to intelligently guide the process of passing test program generation. Then, RecBi ranks all the suspicious files by analyzing the compiler execution traces of the generated passing test programs and the given failing test program following the practice of compiler bug isolation. The experimental results on 120 real bugs from two most popular C open-source compilers, i.e., GCC and LLVM, show that RecBi is able to isolate about 23%/58%/78% bugs within Top-l/Top-5/Top-10 compiler files, and significantly outperforms the state-of-the-art compiler bug isolation approach by improving 92.86%/55.56%/25.68% isolation effectiveness in terms of Top-l/Top-5/Top-10 results.

Original languageEnglish (US)
Title of host publicationProceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages78-89
Number of pages12
ISBN (Electronic)9781450367684
DOIs
StatePublished - Sep 2020
Event35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020 - Virtual, Melbourne, Australia
Duration: Sep 22 2020Sep 25 2020

Publication series

NameProceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020

Conference

Conference35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020
Country/TerritoryAustralia
CityVirtual, Melbourne
Period9/22/209/25/20

Keywords

  • Compiler Bug Isolation
  • Fault Localization
  • Reinforcement Learning

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Enhanced Compiler Bug Isolation via Memoized Search'. Together they form a unique fingerprint.

Cite this