Abstract
We have developed a technique in which biomolecules may be stamped on glassy substrates in arbitrary patterns, with micrometer resolution, and in multiple layers. The silicone rubber microstamps are formed from micromachined (by reactive ion-etch) polyimide molds. Fluorescene patterns demonstrate efficacy in biomolecule transfer. Patterns of stamped and photoresist patterned polylysine are equally effective in controlling growth of neuroblastoma cells. The technique is promising for the creation of biological neural networks in culture.
Original language | English (US) |
---|---|
Pages (from-to) | 2582-2585 |
Number of pages | 4 |
Journal | Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
Volume | 6 |
State | Published - 1997 |
Event | Proceedings of the 1997 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Chicago, IL, USA Duration: Oct 30 1997 → Nov 2 1997 |
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics