TY - JOUR
T1 - Engineering a Conformationally Switchable Artificial Metalloprotein
AU - Fatima, Saman
AU - Boggs, David G.
AU - Ali, Noor
AU - Thompson, Peter J.
AU - Thielges, Megan C.
AU - Bridwell-Rabb, Jennifer
AU - Olshansky, Lisa
N1 - Funding Information:
The authors gratefully acknowledge Dr. Nico Tijandra for the GlnBP plasmid and the NIH (GM138138, L.O.) and the Searle Scholars Program (J.B.R.) for funding. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (grant 085P1000817).
Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/11/30
Y1 - 2022/11/30
N2 - Many naturally occurring metalloenzymes are gated by rate-limiting conformational changes, and there exists a critical interplay between macroscopic structural rearrangements of the protein and subatomic changes affecting the electronic structure of embedded metallocofactors. Despite this connection, most artificial metalloproteins (ArMs) are prepared in structurally rigid protein hosts. To better model the natural mechanisms of metalloprotein reactivity, we have developed conformationally switchable ArMs (swArMs) that undergo a large-scale structural rearrangement upon allosteric effector binding. The swArMs reported here contain a Co(dmgH)2(X) cofactor (dmgH = dimethylglyoxime and X = N3-, H3C-, and iPr-). We used UV-vis absorbance and energy-dispersive X-ray fluorescence spectroscopies, along with protein assays, and mass spectrometry to show that these metallocofactors are installed site-specifically and stoichiometrically via direct Co-S cysteine ligation within the Escherichia coli glutamine binding protein (GlnBP). Structural characterization by single-crystal X-ray diffraction unveils the precise positioning and microenvironment of the metallocofactor within the protein fold. Fluorescence, circular dichroism, and infrared spectroscopies, along with isothermal titration calorimetry, reveal that allosteric Gln binding drives a large-scale protein conformational change. In swArMs containing a Co(dmgH)2(CH3) cofactor, we show that the protein stabilizes the otherwise labile Co-S bond relative to the free complex. Kinetics studies performed as a function of temperature and pH reveal that the protein conformational change accelerates this bond dissociation in a pH-dependent fashion. We present swArMs as a robust platform for investigating the interplay between allostery and metallocofactor regulation.
AB - Many naturally occurring metalloenzymes are gated by rate-limiting conformational changes, and there exists a critical interplay between macroscopic structural rearrangements of the protein and subatomic changes affecting the electronic structure of embedded metallocofactors. Despite this connection, most artificial metalloproteins (ArMs) are prepared in structurally rigid protein hosts. To better model the natural mechanisms of metalloprotein reactivity, we have developed conformationally switchable ArMs (swArMs) that undergo a large-scale structural rearrangement upon allosteric effector binding. The swArMs reported here contain a Co(dmgH)2(X) cofactor (dmgH = dimethylglyoxime and X = N3-, H3C-, and iPr-). We used UV-vis absorbance and energy-dispersive X-ray fluorescence spectroscopies, along with protein assays, and mass spectrometry to show that these metallocofactors are installed site-specifically and stoichiometrically via direct Co-S cysteine ligation within the Escherichia coli glutamine binding protein (GlnBP). Structural characterization by single-crystal X-ray diffraction unveils the precise positioning and microenvironment of the metallocofactor within the protein fold. Fluorescence, circular dichroism, and infrared spectroscopies, along with isothermal titration calorimetry, reveal that allosteric Gln binding drives a large-scale protein conformational change. In swArMs containing a Co(dmgH)2(CH3) cofactor, we show that the protein stabilizes the otherwise labile Co-S bond relative to the free complex. Kinetics studies performed as a function of temperature and pH reveal that the protein conformational change accelerates this bond dissociation in a pH-dependent fashion. We present swArMs as a robust platform for investigating the interplay between allostery and metallocofactor regulation.
UR - http://www.scopus.com/inward/record.url?scp=85142007081&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142007081&partnerID=8YFLogxK
U2 - 10.1021/jacs.2c08885
DO - 10.1021/jacs.2c08885
M3 - Article
C2 - 36378237
AN - SCOPUS:85142007081
SN - 0002-7863
VL - 144
SP - 21606
EP - 21616
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 47
ER -