### Abstract

For an extremal invariant state ω of a weakly asymptotically abelian dynamical system we prove that the corresponding energy spectrum is either one-sided or the whole reals, or a periodic subgroup. The latter case implies abelianness of the algebra in the representation generated by ω.

Original language | English (US) |
---|---|

Pages (from-to) | 87-90 |

Number of pages | 4 |

Journal | Communications in Mathematical Physics |

Volume | 56 |

Issue number | 1 |

DOIs | |

State | Published - Feb 1 1977 |

### Fingerprint

### ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Mathematical Physics

### Cite this

*Communications in Mathematical Physics*,

*56*(1), 87-90. https://doi.org/10.1007/BF01611119

**Energy spectrum of extremal invariant states.** / Herman, Richard; Kastler, Daniel.

Research output: Contribution to journal › Article

*Communications in Mathematical Physics*, vol. 56, no. 1, pp. 87-90. https://doi.org/10.1007/BF01611119

}

TY - JOUR

T1 - Energy spectrum of extremal invariant states

AU - Herman, Richard

AU - Kastler, Daniel

PY - 1977/2/1

Y1 - 1977/2/1

N2 - For an extremal invariant state ω of a weakly asymptotically abelian dynamical system we prove that the corresponding energy spectrum is either one-sided or the whole reals, or a periodic subgroup. The latter case implies abelianness of the algebra in the representation generated by ω.

AB - For an extremal invariant state ω of a weakly asymptotically abelian dynamical system we prove that the corresponding energy spectrum is either one-sided or the whole reals, or a periodic subgroup. The latter case implies abelianness of the algebra in the representation generated by ω.

UR - http://www.scopus.com/inward/record.url?scp=34250298601&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34250298601&partnerID=8YFLogxK

U2 - 10.1007/BF01611119

DO - 10.1007/BF01611119

M3 - Article

AN - SCOPUS:34250298601

VL - 56

SP - 87

EP - 90

JO - Communications in Mathematical Physics

JF - Communications in Mathematical Physics

SN - 0010-3616

IS - 1

ER -