Abstract

This paper entails the application of the energy shaping methodology to control a flexible, elastic Cosserat rod model. Recent interest in such continuum models stems from applications in soft robotics, and from the growing recognition of the role of mechanics and embodiment in biological control strategies: octopuses are often regarded as iconic examples of this interplay. The dynamics of the Cosserat rod, here modeling a single octopus arm, are treated as a Hamiltonian system and the internal muscle actuators are modeled as distributed forces and couples. The proposed energy shaping control design procedure involves two steps: (1) a potential energy is designed such that its minimizer is the desired equilibrium configuration; (2) an energy shaping control law is implemented to reach the desired equilibrium. By interpreting the controlled Hamiltonian as a Lyapunov function, asymptotic stability of the equilibrium configuration is deduced. The energy shaping control law is shown to require only the deformations of the equilibrium configuration. A forward-backward algorithm is proposed to compute these deformations in an online iterative manner. The overall control design methodology is implemented and demonstrated in a dynamic simulation environment. Results of several bio-inspired numerical experiments involving the control of octopus arms are reported.

Original languageEnglish (US)
Title of host publication2020 59th IEEE Conference on Decision and Control, CDC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3913-3920
Number of pages8
ISBN (Electronic)9781728174471
DOIs
StatePublished - Dec 14 2020
Event59th IEEE Conference on Decision and Control, CDC 2020 - Virtual, Jeju Island, Korea, Republic of
Duration: Dec 14 2020Dec 18 2020

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2020-December
ISSN (Print)0743-1546

Conference

Conference59th IEEE Conference on Decision and Control, CDC 2020
Country/TerritoryKorea, Republic of
CityVirtual, Jeju Island
Period12/14/2012/18/20

Keywords

  • Cosserat rod
  • Hamiltonian systems
  • energy-shaping control
  • octopus
  • soft robotics

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Energy Shaping Control of a CyberOctopus Soft Arm'. Together they form a unique fingerprint.

Cite this