TY - JOUR
T1 - Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe
AU - Lu, Zheng
AU - Sethu, Ramakrishnan
AU - Imlay, James A.
N1 - Funding Information:
ACKNOWLEDGMENTS. This work was supported by Grant GM049640 from the NIH.
Publisher Copyright:
© 2018 National Academy of Sciences. All rights reserved.
PY - 2018/4/3
Y1 - 2018/4/3
N2 - It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron, a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families-[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes-whose homologs, in contrast, remain active in aerobic Escherichia coli. Inactivationrate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron, they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli. Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli. Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.
AB - It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron, a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families-[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes-whose homologs, in contrast, remain active in aerobic Escherichia coli. Inactivationrate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron, they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli. Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli. Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.
KW - Bacteroides
KW - Obligate anaerobiosis
KW - Oxidative stress
KW - Reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=85044983646&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044983646&partnerID=8YFLogxK
U2 - 10.1073/pnas.1800120115
DO - 10.1073/pnas.1800120115
M3 - Article
C2 - 29559534
AN - SCOPUS:85044983646
VL - 115
SP - E3266-E3275
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 14
ER -