TY - GEN
T1 - End of life decision making for used products with uncertain quantity of return
AU - Behdad, Sara
AU - Williams, Aida Sefic
AU - Thurston, Deborah
PY - 2011
Y1 - 2011
N2 - The management of end-of-life electronic waste (e-waste) attracts significant attention due to environmental concerns, legislative requirements, consumer interests in green products and market image of manufacturers. However, managing e-waste is complicated by some factors including the high degree of uncertainty of quantity, timing of arrival and quality of the returned products. The variability in the stream of returned end of life (EOL) products makes it difficult to plan for facility materials, equipment and human resource requirements. The aim of this research is to tackle the uncertainty associated with the quantity of received used products. A stochastic programming model for waste stream acquisition systems (compare to market driven systems) is introduced. The model considers the quantity of returned product as an uncertain parameter and determines to what extend the product should be disassembled and what is the best end of life option for each subassembly. The stochastic model is defined in a form of chance constrained programming and is then converted to a mixed integer linear programming. An example is provided to show the application of the model for an uncertain stream of CPUs received in a refurbishing company. Remanufacturers must then decide which proportion of disassembled modules should be processed given specific remanufacturing options.
AB - The management of end-of-life electronic waste (e-waste) attracts significant attention due to environmental concerns, legislative requirements, consumer interests in green products and market image of manufacturers. However, managing e-waste is complicated by some factors including the high degree of uncertainty of quantity, timing of arrival and quality of the returned products. The variability in the stream of returned end of life (EOL) products makes it difficult to plan for facility materials, equipment and human resource requirements. The aim of this research is to tackle the uncertainty associated with the quantity of received used products. A stochastic programming model for waste stream acquisition systems (compare to market driven systems) is introduced. The model considers the quantity of returned product as an uncertain parameter and determines to what extend the product should be disassembled and what is the best end of life option for each subassembly. The stochastic model is defined in a form of chance constrained programming and is then converted to a mixed integer linear programming. An example is provided to show the application of the model for an uncertain stream of CPUs received in a refurbishing company. Remanufacturers must then decide which proportion of disassembled modules should be processed given specific remanufacturing options.
UR - http://www.scopus.com/inward/record.url?scp=84863603025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863603025&partnerID=8YFLogxK
U2 - 10.1115/DETC2011-48277
DO - 10.1115/DETC2011-48277
M3 - Conference contribution
AN - SCOPUS:84863603025
SN - 9780791854860
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 973
EP - 984
BT - ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
T2 - ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
Y2 - 28 August 2011 through 31 August 2011
ER -