EMRQA: A large corpus for question answering on electronic medical records

Anusri Pampari, Preethi Raghavan, Jennifer Liang, Jian Peng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a novel methodology to generate domain-specific large-scale question answering (QA) datasets by re-purposing existing annotations for other NLP tasks. We demonstrate an instance of this methodology in generating a large-scale QA dataset for electronic medical records by leveraging existing expert annotations on clinical notes for various NLP tasks from the community shared i2b2 datasets§. The resulting corpus (emrQA) has 1 million questions-logical form and 400,000+ question-answer evidence pairs. We characterize the dataset and explore its learning potential by training baseline models for question to logical form and question to answer mapping.

Original languageEnglish (US)
Title of host publicationProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
EditorsEllen Riloff, David Chiang, Julia Hockenmaier, Jun'ichi Tsujii
PublisherAssociation for Computational Linguistics
Pages2357-2368
Number of pages12
ISBN (Electronic)9781948087841
StatePublished - 2018
Event2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 - Brussels, Belgium
Duration: Oct 31 2018Nov 4 2018

Publication series

NameProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018

Conference

Conference2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
Country/TerritoryBelgium
CityBrussels
Period10/31/1811/4/18

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'EMRQA: A large corpus for question answering on electronic medical records'. Together they form a unique fingerprint.

Cite this