Emerging Trends and Future Opportunities for Battery Recycling

Jarom G. Sederholm, Lin Li, Zheng Liu, Kai Wei Lan, En Ju Cho, Yashraj Gurumukhi, Mohammed Jubair Dipto, Alexander Ahmari, Jin Yu, Megan Haynes, Nenad Miljkovic, Nicola H. Perry, Pingfeng Wang, Paul V. Braun, Marta C. Hatzell

Research output: Contribution to journalReview articlepeer-review

Abstract

The global lithium-ion battery recycling capacity needs to increase by a factor of 50 in the next decade to meet the projected adoption of electric vehicles. During this expansion of recycling capacity, it is unclear which technologies are most appropriate to reduce costs and environmental impacts. Here, we describe the current and future recycling capacity situation and summarize methods for quantifying costs and environmental impacts of battery recycling methods with a focus on cathode active materials. Second use, electrification of pyrometallurgy and hydrometallurgy, direct recycling, and electrochemical recycling methods are discussed as leading-edge methods for overcoming state of the art battery recycling challenges. The paper ends with a discussion of future issues and considerations regarding solid-state batteries and co-optimization of battery design for recycling.

Original languageEnglish (US)
Pages (from-to)107-119
Number of pages13
JournalACS Energy Letters
Volume10
Issue number1
DOIs
StatePublished - Jan 10 2025

ASJC Scopus subject areas

  • Chemistry (miscellaneous)
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Emerging Trends and Future Opportunities for Battery Recycling'. Together they form a unique fingerprint.

Cite this