Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects

Koon Hoo Teo, Yuhao Zhang, Nadim Chowdhury, Shaloo Rakheja, Rui Ma, Qingyun Xie, Eiji Yagyu, Koji Yamanaka, Kexin Li, Tomás Palacios

Research output: Contribution to journalArticlepeer-review

Abstract

GaN technology is not only gaining traction in power and RF electronics but is also rapidly expanding into other application areas including digital and quantum computing electronics. This paper provides a glimpse of future GaN device technologies and advanced modeling approaches that can push the boundaries of these applications in terms of performance and reliability. While GaN power devices have recently been commercialized in the 15-900 V classes, new GaN devices are greatly desirable to explore both higher-voltage and ultra-low-voltage power applications. Moving into the RF domain, ultra-high frequency GaN devices are being used to implement digitized power amplifier circuits, and further advances using the hardware-software co-design approach can be expected. On the horizon is the GaN CMOS technology, a key missing piece to realize the full-GaN platform with integrated digital, power, and RF electronics technologies. Although currently a challenge, high-performance p-type GaN technology will be crucial to realize high-performance GaN CMOS circuits. Due to its excellent transport characteristics and ability to generate free carriers via polarization doping, GaN is expected to be an important technology for ultra-low temperature and quantum computing electronics. Finally, given the increasing cost of hardware prototyping of new devices and circuits, the use of high-fidelity device models and data-driven modeling approaches for technology-circuit co-design are projected to be the trends of the future. In this regard, physically inspired, mathematically robust, less computationally taxing, and predictive modeling approaches are indispensable. With all these and future efforts, we envision GaN to become the next Si for electronics.

Original languageEnglish (US)
Article number160902
JournalJournal of Applied Physics
Volume130
Issue number16
DOIs
StatePublished - Oct 28 2021

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects'. Together they form a unique fingerprint.

Cite this