Emergent neutrality in consumer-resource dynamics

Rafael D'Andrea, Theo Gibbs, James P. O'Dwyer

Research output: Contribution to journalArticlepeer-review


Neutral theory assumes all species and individuals in a community are ecologically equivalent. This controversial hypothesis has been tested across many taxonomic groups and environmental contexts, and successfully predicts species abundance distributions across multiple high-diversity communities. However, it has been critiqued for its failure to predict a broader range of community properties, particularly regarding community dynamics from generational to geological timescales. Moreover, it is unclear whether neutrality can ever be a true description of a community given the ubiquity of interspecific differences, which presumably lead to ecological inequivalences. Here we derive analytical predictions for when and why non-neutral communities of consumers and resources may present neutral-like outcomes, which we verify using numerical simulations. Our results, which span both static and dynamical community properties, demonstrate the limitations of summarizing distributions to detect non-neutrality, and provide a potential explanation for the successes of neutral theory as a description of macroecological pattern.

Original languageEnglish (US)
Article numbere1008102
JournalPLoS computational biology
Issue number7
StatePublished - Jul 2020

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics


Dive into the research topics of 'Emergent neutrality in consumer-resource dynamics'. Together they form a unique fingerprint.

Cite this