TY - JOUR
T1 - Embeddings of operator ideals into Lp-spaces on finite von Neumann algebras
AU - Junge, M.
AU - Sukochev, F.
AU - Zanin, D.
N1 - Publisher Copyright:
© 2017 Elsevier Inc.
PY - 2017/5/25
Y1 - 2017/5/25
N2 - Let L(H) be the ⁎-algebra of all bounded operators on an infinite dimensional Hilbert space H and let (I,‖⋅‖I) be an ideal in L(H) equipped with a Banach norm which is distinct from the Schatten–von Neumann ideal Lp(H), 1≤p>2. We prove that I isomorphically embeds into an Lp-space Lp(R), 1≤p>2 (here, R is the hyperfinite II1-factor) if its commutative core (that is, Calkin space for I) isomorphically embeds into Lp(0,1). Furthermore, we prove that an Orlicz ideal LM(H)≠Lp(H) isomorphically embeds into Lp(R), 1≤p>2, if and only if it is an interpolation space for the Banach couple (Lp(H),L2(H)). Finally, we consider isomorphic embeddings of (I,‖⋅‖I) into Lp-spaces associated with arbitrary finite von Neumann algebras.
AB - Let L(H) be the ⁎-algebra of all bounded operators on an infinite dimensional Hilbert space H and let (I,‖⋅‖I) be an ideal in L(H) equipped with a Banach norm which is distinct from the Schatten–von Neumann ideal Lp(H), 1≤p>2. We prove that I isomorphically embeds into an Lp-space Lp(R), 1≤p>2 (here, R is the hyperfinite II1-factor) if its commutative core (that is, Calkin space for I) isomorphically embeds into Lp(0,1). Furthermore, we prove that an Orlicz ideal LM(H)≠Lp(H) isomorphically embeds into Lp(R), 1≤p>2, if and only if it is an interpolation space for the Banach couple (Lp(H),L2(H)). Finally, we consider isomorphic embeddings of (I,‖⋅‖I) into Lp-spaces associated with arbitrary finite von Neumann algebras.
KW - Banach space embeddings
KW - Noncommutative independence
UR - http://www.scopus.com/inward/record.url?scp=85016937999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016937999&partnerID=8YFLogxK
U2 - 10.1016/j.aim.2017.03.031
DO - 10.1016/j.aim.2017.03.031
M3 - Article
AN - SCOPUS:85016937999
SN - 0001-8708
VL - 312
SP - 473
EP - 546
JO - Advances in Mathematics
JF - Advances in Mathematics
ER -